In Vitro Evaluation of Binding of Fish Mucus by Nanoparticles Induced Oxidative Stress on the Common Carp

  • Zulfqar Ahmad Department Zoology, Wildlife and Fisheries University of Agriculture Faisalabad
  • Muhammad Liaqat Department: institute of chemical sciences
  • Muhammad Naeem ul Hassan Department = School of Chemistry Minhaj University Lahore
  • Muhammad Masood Department Sulaiman Bin Abdullah Aba Al-Khail Center for Interdisciplinary Research in Basic Sciences (SA-CIRBS) Faculty of Basic and Applied Sciences International Islamic University Islamabad
  • Muhammad Irfan Haider Jafri Department Institute of Pure and Applied Biology BZU Multan
  • Azmat Ullah Department of Zoology Ghazi university Dera Ghazi khan
  • Hashmat Riaz Department Facility of veterinary sciences BZU- Multan
  • Muhammad Sikandar University of Agriculture Faisalabad, Pakistan Department of Zoology,Wildlife and fisheries
Keywords: Cyprinus carpio, POD, SOD, TSP

Abstract

Common carp (Cyprinus carpio) is a large, deep bodied fish and can tolerate all types of water. Fish skin mucus comprises numerous immune substances that provide defense against a wide spectrum of pathogens. The present research project is designed to study the binding of fish mucus isolated from common carp with silver nanoparticles. The characterization was done through FTIR and UV visible spectrophotometer. The peak of mucus based silver nanoparticles was higher than that of crude mucus extract in UV-visible spectrum. The FTIR spectra showed different functional groups such as alkanes, alkyl halides and amines. The different biological activities like antimicrobial, antioxidant and antibiofilm potential of fish mucus based nanoparticles were checked. For some activities, mucus exhibited better results and for others mucus based silver nanoparticles had higher activities. Fish mucus of common carp (Cyprinus carpio) showed highest antibacterial activity against E. coli bacteria with inhibition zone of 21 mm in crude mucus case. Lowest antibacterial activity was found against the B.subtilis with inhibition zone of 9 mm. Biochemical analysis exhibited higher values of catalase activity (CAT), superoxide dismutase activity (SOD), peroxidase activity (POD) and total soluble protein (TSP) for mucus and lowest for free silver nanoparticles.

References

1. Tomelleri, J.R. and Eberle, M.E., 2011. Fishes of the central United States. University Press of Kansas.
2. Dash, S., S. K., Das, J., Samal and H. N., Thatoi. 2018. Epidermal mucus, a major determinant in fish health: a review. Iran. J. Vet. Res., 19: 72.
3. Tateno, Y., T., Imanishi, S., Miyazaki, K., Fukami-Kobayashi, N., Saitou, H., Sugawara and T., Gojobori. 2002. DNA Data Bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids Res., 30: 27-30.
4. Nikam, A.P., Mukesh, P.R. and Haudhary, S.P., 2014. Nanoparticles—An overview. J. Drug Deliv. Ther, 3, pp.1121-1127.
5. Tyor, A. K. and S. U. N. I. L. Kumari. 2016. Biochemical characterization and antibacterial properties of fish skin mucus of fresh water fish, Hypophthalmichthysnobilis. Int. J. Pharm. Pharm. Sci., 8: 132-136.
6. Munir, H., M. Shahid, F. Anjum, M. N. Akhtar, S. M. Badawy and A. El-Ghorab. 2016. Application of Acacia modesta and Dalbergia sissoo gums as green matrix for silver nanoparticle binding. Green Proc. Synth., 5: 101-106.
7. Cavaleri, J., D. Rankin, J. Harbeck, L. R. Sautter, S. Y. McCarter, S. E. Sharp, H. J. Ortez, and A. C. Spiegel. 2005. "Manual of antimicrobial susceptibility testing." American Society for Microbiology, Seattle, Washington 12: 53-42
8. Phillott, A. D. and C. J. Parmenter. 2012. Anti-fungal properties of sea turtle cloacal mucus and egg albumen. Marine Turtle Newsletter, 134: 17-21.
9. Wiegand, I., K. Hilpert and R. E. Hancock. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. protocols, 3: 163.
10. Mamelona, J., E. Pelletier, K. Girard-Lalancette, J. Legault, S. Karboune and S. Kermasha. 2007. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chem., 104: 1040-1047.
11. Garcia-Moreno, P. J., I. Batista, C. Pires, N. M. Bandarra, F. J. Espejo-Carpio, A. Guadix and E. M. Guadix. 2014. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Res. Intern., 65, 469-476.
12. Chung, H and A. E., Yousef. 2005. Lactobacillus curvatus produces a bacteriocin‐like agent active against gram‐negative pathogenic bacteria. J. Food. Saf., 25: 59-79.
13. Powell, W. A., C. M. Catranis and C. A. Maynard. 2000. Design of self‐processing antimicrobial peptides for plant protection. Lett. Appl. Microbiol., 31: 163-168.
14. Shahid, S. A., A. Farooq, M. Shahid, N. Majeed, A. Azam, M. Bashir, M. Amin, Z. Mahmood and I. Shakir. 2015. Laser-assisted synthesis of Mn0.50 Zn 0.50 Fe2O4 nanomaterial: Characterization and in vitro inhibition activity towards Bacillus subtilis biofilm. J. Nanomat., 15: 1-6.
15. Mohebbi-Fani, M., A. Mirzaei, S. Nazifi and M. R. Tabandeh. 2012. Oxidative status and antioxidant enzyme activities in erythrocytes from breeding and pregnant ewes grazing natural pastures in dry season. Revue de Med. Veterin., 163: 454-460.
16. Kumari, K., A. Khare and S. Dange. 2014. The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the fish Labeo rohita. BioMed. Res. int., 2014: 1-11.
17. Hiwarale, D. K., Y .K. Khillare, K. Khillare, U. Wagh, J. Sawant and M. Magare. 2016. Assessment of antimicrobial properties of fih mucus. World J. Pharm. Pharmaceut. Sci., 5: 666-672.
18. Jayaseelan, C., A. A. Rahuman, R. Ramkumar, P. Perumal, G. Rajakumar, A. V. Kirthi and S. Marimuthu. 2014. Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus. Ecotoxicol. Environ. Safety, 107: 220-228.
19. Bragadeeswaran, S., S. Priyadharshini, K. Prabhu and S. R. S. Rani. 2011. Antimicrobial and hemolytic activity of fish epidermal mucus Cynoglossus arel and Arius caelatus. Asian Pacific journal of tropical medicine, 4: 305-309.
20. Zamzow, D. and d'Silva, A.P., 1990. The effect of neon and argon additions on improving selectivities in the helium afterglow discharge detector. Applied Spectroscopy, 44(6), pp.1074-1079.
21. Duan, X., Y. Jiang, X. Su, Z. Zhang and J. Shi. 2007. Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chem., 10: 1365-1371.
22. Gulçin, I., R. Elias, A. Gepdiremen and L. Boyer. 2006. Antioxidant activity of lignans from fringe tree (Chionanthus virginicus). Euro. Food Res. Technol., 223: 759
23. Turkoglu, D., M. Abuloha and T. Abdeljawad. 2010. KKM mappings in cone metric spaces and some fixed point theorems. Nonlinear Analysis: Theory, Methods & Applications, 7: 348-353.
24. Gulçin, I. 2005. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Intern. J. Food Sci. Nutrition, 56: 491-499.
25. Sutherland, I. W. 2005. Polysaccharides from microorganisms, plants and animals. Biopoly. Online: Biol. Chem.Biotechnol. Appl., 5.
26. Flemming, H. C. and J. Wingender. 2010. The biofilm matrix. Nature Rev. Microbial., 8: 623.
27. Kuppulakshmi, C., M. Prakash, G. Gunasekaran, G. Manimegalai and S. Sarojini. 2008. Antibacterial properties of fish mucus from. European Rev. Med. Pharmacol. Sci., 12, 149-153.
28. Rendueles, O., J. B. Kaplan and J. M. Ghigo. 2013. Antibiofilm polysaccharides. Environ. Microbiol., 15: 334-346
29. Balasubramanian, S., M. Prakash, P. Senthilraja and G. Gunasekaran. 2012. Antimicrobial properties of skin mucus from four freshwater cultivable fishes (Catla catla, Hypophthalmichthys molitrix, Labeo rohita and Ctenopharyngodon idella). African J. Microbiol. Res., 6: 5110-5120.
30. Hellio, C., A. M. Pons, C. Beaupoil, N. Bourgougnon, Y. L. Gal. 2002. Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. Int. J. Antimicrob. Agents, 20: 214-219.
31. Reddy, L. S., M. M. Nisha, M. Joice and P. N. Shilpa. 2014. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharmaceut. Biol., 52: 1388-1397.
32. Rhayour, K., T. Bouchikhi, A. Tantaoui-Elaraki, K. Sendide and A. Remmal. 2003. The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. J. Essen. Oil Res., 15: 356-362.
33. Wiegand, I., K. Hilpert and R. E. Hancock. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. protocols, 3: 163.
34. Zhong, J., W. Wang, X. Yang, X. Yan and R. Liu. 2013. A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides, 39: 1-5.
Published
2022-06-25
How to Cite
Ahmad, Z., Liaqat, M., Hassan, M. N. ul, Masood , M., Jafri , M. I. H., Ullah , A., Riaz , H., & Sikandar , M. (2022). In Vitro Evaluation of Binding of Fish Mucus by Nanoparticles Induced Oxidative Stress on the Common Carp. Central Asian Journal of Medical and Natural Science, 3(3), 705-723. https://doi.org/10.17605/cajmns.v3i3.845
Section
Articles