Synthesis of Polyoxide Catalysts and their Application Possibility in Catalytic Conversion of Methane

  • Khurshid M. Saidov Samarkand State University of Veterinary Medicine
  • Nurali K. Mukhamadiev Samarkand state university
  • Shuhrat M. Sayitkulov Samarkand State University
  • Oybek M. Tursunkulov Center of Advanced Technologies under the Ministry of innovative development of the Republic of Uzbekistan
Keywords: catalyst, solution-combustion synthesis, composite, diffractometry, scanning electron microscopy, sorption, conversion, synthesis gas

Abstract

The research is dedicated to the study of the conversion of methane with carbon dioxide using the catalysts containing NiO. The composites of oxides of the d-metals – catalysts that were prepared by the method of Solution-combustion synthesis using sol-gel technology is the object of the research. The morphology of the catalysts surface has been investigated by electronic microscopy (SEM), the phase composition by X-ray diffractometry (XRD), the element composition by X-ray microanalysis, the texture characteristics by McBen-Bakra mercury porometry. According to the results it was identified that the catalysts are high dispersed compounds, which composed of oxides of Ni, Al, Zr and Ti. The specific surface area of the polyoxide catalysts was determined to be SBET=420 ÷ 598 m2/g, the specific volume of the pores Vs=0,74 ÷ 0,92 cm3/g, the average diameter of pores D=220 ÷ 355 nm, the monolayer capacity am=1,5 ÷ 0,96 mole/kg and the adsorption saturation as =5,4 ÷ 2.2 moles/kg. Also, the catalytic activity of the catalysts was estimated by the carbonate conversion of methane. In this case the conversion of methane was 92%, carbon dioxide 87%, the yield of formed CO and H2 was 57,6 % and 51,9 % respectively.

References

Saidov Kh.M.; Sayitkulov Sh.M.; Mukhamadiev N.K. Synthesis of the catalysts based on oxides of some d-elements. Uzbek chemical journal. 2019; Volume 4, pp. 3-8 (in Uzbek).

Saidov Kh.M.; Mukhamadiyev N.K. Сatalyst synthesis based on Ni, Zr oxides and its research. Int. Conf. on Integrated Innovative Development of Zarafshan Region: Achievement, Challenges and Prospects,Navoi, Uzbekistan, 27-28.11.2019; pp. 274-276.

Dossumov K.; Churina D.Kh.; Myltykbaeva L.K.; Tungatarova S.A. Oxide catalysts for hydrogen production from natural gas-methane in one stage. European Applied Sciences. 2013; Volume 7, pp. 92-94.

Lapidus A.L.; Zhagfarov F. G.; Sosna M.Kh.; Melnikov A.P.; Elkin A. B.; Chung Z. Study of the catalytic process of carbon dioxide conversion of natural gas. Gas chemistry. 2009; Volume 3, pp. 14-26 (in Russian).

Cross A.; Roslyakov S.; Manukyan K.V.; Rouvimov S.; Rogachev A.S.; Kovalev D.; Mukasyan A.S. In situ preparation of highly stable Ni-based supported catalysts by solution combustion synthesis. The Journal of Physical Chemistry. 2014; Volume 45, pp. 26191-26198.

Novikov V.; Xanthopoulou G.; Knysh Y.; Amosov A.P. Solution Combustion Synthesis of nanoscale Cu-Cr-O spinels: Mechanism, properties and catalytic activity in CO oxidation. Ceramics International, 2017; Volume 15, pp 11733-11742.

Varma A.; Rogachev A.S.; Mukasyan A.S.; Hwang S. Combustion synthesis of advanced materials: principles and applications. Advances in chemical engineering, 1998; Volume 24, pp 79-226

Stojanovic B.D.; Dzunuzovic A.S.; Ilic N.I. Review of methods for the preparation of magnetic metal oxides. Magnetic, ferroelectric, and multiferroic metal oxides, 2018; Elsevier, pp 333-359.

Li F. T.; Ran J.; Jaroniec M.; Qiao S.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015; Volume 7. pp. 17590-17610.

Christy A.J.; Umadevi M.; Sagadevan S. Solution combustion synthesis of metal oxide nanoparticles for membrane technology. Metal Oxide Powder Technologies, 2020; Elsevier,. pp. 333-349.

Varma, A.; Mukasyan A.S.; Rogachev A.S.; Manukyan K.V. Solution combustion synthesis of nanoscale materials. Chemical reviews, 2016; Volume. 116. pp. 14493-14586.

Wen W.; Wu J.M. Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC advances, 2014. Volume. 4. pp. 58090-58100.

Harish V.; Tewari D.; Gaur M.; Yadav A.B.; Swaroop S.; Bechelany, M.; Barhoum A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials, 2022. Volume. 12. pp 457.

Hossain M.K., Kecsenovity E., Varga A.; Molnar M.; Janáky C.; Rajeshwar; K. Solution combustion synthesis of complex oxide semiconductors. International Journal of Self-Propagating High-Temperature Synthesis, 2018. Volume. 27. pp. 129-140.

Balamurugan S.; Linda Philip A.J.; Vidya R.S.A. Versatile combustion synthesis and properties of nickel oxide (NiO) nanoparticles. Journal of Superconductivity and Novel Magnetism, 2016. Volume. 29. pp. 2207-2212.

Singhania A.; Krishnan V.V.; Bhaskarwar A.N.; Bhargava B.; Parvatalu D; Banerjee S. Hydrogen production from the decomposition of hydrogen iodide over nanosized nickel-oxide-zirconia catalysts prepared by solution-combustion techniques. Catalysis Communications. 2017. Volume. 93. pp. 5-9.

Saidov Kh.M.; Mukhamadiev N.K. Synthesis of the catalysts based on oxides of some d-elements. Scientific bulletin. 2020. pp. 58-60.

Saidov Kh.M.; Mukhamadiev N.K. Synthesis of the catalysts based on oxides of some d-elements .IOP Conference Series. Materials Science and Engineering. IOP Publishing 2020. Volume. 1008. pp. 012035.

Khort A.; Hedberg J.; Mei N.; Romanovski V.; Blomberg E.; Odnevall I. Corrosion and transformation of solution combustion synthesized Co, Ni and CoNi nanoparticles in synthetic freshwater with and without natural organic matter. Scientific reports. 2021. Volume. 11. pp. 1-14.

Li F. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale. 2015. Volume. 7. pp. 17590-17610.

Saidov Kh.M.; Ruziev I.; Omontosheva M. T.; Mukhamadiev N.K. Synthesis of the catalysts based on oxides of some d-elements. Collection of articles of the III International Scientific and Practical Conference, Dushanbe, Tajikistan, 10.11.2021. pp. 28 – 32 (in Russian).

Kurzina I.A.; Godymchuk A.Yu.; Kachaev A.A. X-ray phase analysis of nanopowders . Tomsk: Tomsky Publishing House polytechnic university, Tomsk. Russia 2010. pp.1-14.

Saidov Kh.M.; Sayitkulov Sh.M.; Mukhamadiev N.K. Study of the spatial composition of sorbents obtained from various soil samples using X-ray phase diffractometry. Scientific Bulletin. 2016. Volume. 95 pp. 134-137 (in Uzbek).

Brożek-Mucha Z. Scanning electron microscopy and X-ray microanalysis for chemical and morphological characterisation of the inorganic component of gunshot residue: selected problems. BioMed Research International. 2014. Volume. 2014 pp. 1-12.

Scapino L.; Zondag H.A.; Van Bael J.; Diriken J.; Rindt C.C. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale. Applied Energy. 2017. Volume. 190 pp. 920-948.

Kaumenova G.N. Development of Composite Materials by Combustion Synthesis for Catalytic Reforming of Methane into Hydrocarbons and Syngas . Dissertationб Phd, Kazakh National University named after. al-Farabiб Astana, Kazakhstan, 2020. (in Russian).

Monroy T. G.; Abella L.C.; Gallardo S.M.; Hinode H. Catalytic dry reforming of methane using Ni/MgO-ZrO2 catalyst. Proceedings of the and Annual Gas Processing Symposium. Elsevier, 2010. pp. 145-152.

Khan H.; Yerramilli A.S.; D'Oliveira A.; Alford T.L.; Boffito D.C.; Patience G.S. Experimental methods in chemical engineering: X‐ray diffraction spectroscopy—XRD. The Canadian Journal of Chemical Engineering. 2020. Volume. 98. pp. 1255-1266.

Singh S.D.; Nand M.; Das A.; Ajimsha R.S.; Upadhyay A.; Kamparath R.; Ganguli. Structural, electronic structure, and band alignment properties at epitaxial NiO/Al2O3 heterojunction evaluated from synchrotronbased X-ray techniques. Journal of Applied Physics. 2016. Volume. 119. pp. 165302.

Uzokov J.R.; Mukhamadiev N.K. Sorption characteristics of mesoporous composite SiO2·TiO2. Central asian journal of medical and natural sciences. 2021. Volume. 2. pp. 494-498.

Hernández M.A.; Velasco J.A.; Asomoza M.; Solis S.; Rojas F.; Lara V.H. Adsorption of benzene, toluene, and p-xylene on microporous SiO2. Industrial and engineering chemistry research. 2004. Volume. 43. pp. 1779-1787.

Uzokov J.R.; Mukhamadiev N.K. Sorption Characteristics of The Mesoporous Sorbents Based On Tetraethoxysilane And Titanium Oxide. European Journal of Molecular & Clinical Medicine. 2020. Volume. 7. pp. 656-660.

Kotkowski T.; Cherbański R.; Molga E. Tyre-derived activated carbon–textural properties and modelling of adsorption equilibrium of n-hexane. Chemical and Process Engineering. 2020. Volume. 41. pp. 25–44.

Abbas S. Z.; Dupont V.; Mahmud T. Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. International journal of hydrogen Energy. 2017. Volume. 42. pp. 2889-2903.

Li H.; Xu H.; Wang J. Methane reforming with CO2 to syngas over CeO2-promoted Ni/Al2O3-ZrO2 catalysts prepared via a direct sol-gel process. Journal of natural gas chemistry. 2011. Volume. 20. pp. 1-8.

Al-Fatesh A.; Singh S.K.; Kanade G.S.; Atia H.; Fakeeha A.H.; Ibrahim A.A.; Labhasetwar N.K. Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts: High activity for CO2 reforming, steam–CO2 reforming and oxy–CO2 reforming of CH4. International journal of hydrogen energy. 2018. Volume. 43. pp. 12069-12080.

Sakamoto K.; Hayashi F.; Sato K.; Hirano M.; and Ohtsu, N. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Applied Surface Science. 2020. Volume. 526. pp. 146729.

Hosseinpour-Mashkani S.M.; Maddahfar M.; Sobhani-Nasab A. Novel silver-doped NiTiO3: auto-combustion synthesis, characterization and photovoltaic measurements. South African Journal of Chemistry. 2017. Volume. 70. pp. 44-48.

Tamimi K.; Alavi S. M.; Rezaei M.; Akbari E.I. Preparation of the Mn-Promoted NiO–Al2O3 nanocatalysts for low temperature CO2 methanation. Journal of the Energy Institute. 2021. Volume. 99. pp. 48-58.

Alawi N.M.; Barifcani A.; Abid H.R. Optimisation of CH4 and CO2 conversion and selectivity of H2 and CO for the dry reforming of methane by a microwave plasma technique using a B ox–B ehnken design. Asia‐Pacific Journal of Chemical Engineering. 2018. Volume. 13. pp. 2254.

Soloviev S.O.; Kapran A. Y.; Orlyk S.N.; Gubareni E.V. Carbon dioxide reforming of methane on monolithic Ni/Al2O3-based catalysts. Journal of natural gas chemistry. 2011. Volume. 20. pp. 184-190.

Liu H. CO2 Chemical Utilization through Dry Reforming of Methane: Development of Non-Noble Metals Catalysts Supported on Natural and Synthetic Clays. dis, PhD, Sorbonne université, Paris, France, 2018.

Burger T. COx Methanation over Ni-Al-Based Catalysts: Development of CO2 Methanation Catalysts and Kinetic Modeling. dis, PhD, Technical university of Munich, Munich, Germany. 2021. (in German)

Pashchenko D. Experimental investigation of synthesis gas production by methane reforming with flue gas over a NiO-Al2O3 catalyst: Reforming characteristics and pressure drop. International Journal of Hydrogen Energy. 2019. Volume. 44.pp. 7073-7082.

Published
2022-12-31
How to Cite
Khurshid M. Saidov, Nurali K. Mukhamadiev, Shuhrat M. Sayitkulov, & Oybek M. Tursunkulov. (2022). Synthesis of Polyoxide Catalysts and their Application Possibility in Catalytic Conversion of Methane. Central Asian Journal of Medical and Natural Science, 3(6), 760-779. Retrieved from https://cajmns.centralasianstudies.org/index.php/CAJMNS/article/view/760
Section
Articles