Main Article Content


Artificial intelligence (AI) has infiltrated our everyday lives, and there have been extremely promising applications of AI in the area of health in the previous decade, including medical imaging, in vitro diagnostics, intelligent rehabilitation, and prognosis. Breast cancer is one of the most prevalent malignant tumors in women, and it poses a major danger to both physical and emotional health. Early detection of breast cancer by mammography, ultrasound, and magnetic resonance imaging (MRI) may greatly improve patients' prognoses. AI has shown exceptional performance in picture recognition tasks and has been extensively researched in breast cancer screening. This study discusses the history of artificial intelligence (AI) and its applications in breast medical imaging (mammography, ultrasound, and MRI), such as lesion recognition, segmentation, and classification; breast density evaluation; and breast cancer risk assessment. In addition, we examine the limitations and future prospects of using AI in medical imaging of the breast.


Artificial intelligence magnetic resonance imaging cancer

Article Details

How to Cite
Chakraborty, A. (2021). Artificial Intelligence in Breast Cancer: Imaging and Diagnosis. CENTRAL ASIAN JOURNAL OF MEDICAL AND NATURAL SCIENCES, 2(6), 390-406.


  1. 1. Bouletreau P, Makaremi M, Ibrahim B, Louvrier A, Sigaux N. Artificial Intelligence: Applications in Orthognathic Surgery. J Stomatol Oral Maxillofac Surg (2019) 120(4):347–54. doi: 10.1016/j.jormas.2019.06.001
  2. 2. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial Intelligence in Radiology. Nat Rev Cancer (2018) 18(8):500–10. doi: 10.1038/s41568-018-0016-5
  3. 3. Korn RL, Rahmanuddin S, Borazanci E. Use of Precision Imaging in theEvaluation of Pancreas Cancer. Cancer Treat Res (2019) 178:209–36. doi: 10.1007/978-3-030-16391-4_8
  4. 4. Zhou LQ, Wang JY, Yu SY, Wu GG, Wei Q, Deng YB, et al. Artificial Intelligence in Medical Imaging of the Liver. World J Gastroenterol (2019) 25 (6):672–82. doi: 10.3748/wjg.v25.i6.672
  5. 5. Arieno A, Chan A, Destounis SV. A Review of the Role of AugmentedIntelligence in Breast Imaging: From Automated Breast Density Assessment to Risk Stratification. AJR Am J Roentgenol (2019) 212(2):259–70. doi: 10.2214/AJR.18.20391
  6. 6. Qin C, Yao D, Shi Y, Song Z. Computer-Aided Detection in Chest Radiography Based on Artificial Intelligence: A Survey. BioMed Eng Online (2018) 17(1):113. doi: 10.1186/s12938-018-0544-y
  7. 7. Villanueva-Meyer JE, Chang P, Lupo JM, Hess CP, Flanders AE, Kohli M.Machine Learning in Neurooncology Imaging: From Study Request to Diagnosis and Treatment. AJR Am J Roentgenol (2019) 212(1):52–6. doi: 10.2214/AJR.18.20328
  8. 8. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT,et al. Early Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Updagger. Ann Oncol (2019) 30(8):1194–220. doi: 10.1093/annonc/mdz173
  9. 9. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. GlobalCancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68 (6):394–424. doi: 10.3322/caac.21492
  10. 10. Fiorica JV. Breast Cancer Screening, Mammography, and Other Modalities.Clin Obstet Gynecol (2016) 59(4):688–709. doi: 10.1097/GRF. 0000000000000246
  11. 11. Shenbagavalli P, Thangarajan R. Aiding the Digital Mammogram for Detectingthe Breast Cancer Using Shearlet Transform and Neural Network. Asian Pac J Cancer Prev (2018) 19(9):2665–71. doi: 10.22034/APJCP.2018.19.9.2665
  12. 12. Abdelhafiz D, Yang C, Ammar R, Nabavi S. Deep Convolutional Neural Networks for Mammography: Advances, Challenges and Applications. BMC Bioinf (2019) 20(Suppl 11):281. doi: 10.1186/s12859-019-2823-4
  13. 13. Hamet P, Tremblay J. Artificial Intelligence in Medicine. Metabolism (2017) 69S:S36–40. doi: 10.1016/j.metabol.2017.01.011
  14. 14. Viceconti M, Hunter P, Hose R. Big Data, Big Knowledge: Big Data forPersonalized Healthcare. IEEE J BioMed Health Inform (2015) 19(4):1209–15. doi: 10.1109/JBHI.2015.2406883
  15. 15. Obermeyer Z, Emanuel EJ. Predicting the Future - Big Data, MachineLearning, and Clinical Medicine. N Engl J Med (2016) 375(13):1216–9. doi:10.1056/NEJMp1606181
  16. 16. Al-Antari MA, Al-Masni MA, Choi MT, Han SM, Kim TS. A Fully IntegratedComputer-Aided Diagnosis System for Digital X-Ray Mammograms via Deep Learning Detection, Segmentation, and Classification. Int J Med Inform (2018) 117:44–54. doi: 10.1016/j.ijmedinf.2018.06.003
  17. 17. Rodriguez-Ruiz A, Lang K, Gubern-Merida A, Teuwen J, Broeders M,Gennaro G, et al. Can We Reduce the Workload of Mammographic Screening by Automatic Identification of Normal Exams With Artificial Intelligence? A Feasibility Study. Eur Radiol (2019) 29(9):4825–32. doi: 10.1007/s00330-019-06186-9
  18. 18. Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. Overview of Radiomics in Breast Cancer Diagnosis and Prognostication. Breast (2020) 49:74–80. doi: 10.1016/j.breast.2019.10.018
  19. 19. Yanagawa M, Niioka H, Hata A, Kikuchi N, Honda O, Kurakami H, et al.Application of Deep Learning (3-Dimensional Convolutional Neural Network) for the Prediction of Pathological Invasiveness in Lung Adenocarcinoma: A Preliminary Study. Med (Baltimore) (2019) 98(25): e16119. doi: 10.1097/MD.0000000000016119
  20. 20. Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ. Artificial Intelligence in Breast Imaging. Clin Radiol (2019) 74(5):357–66. doi: 10.1016/j.crad.2019.02.006
  21. 21. Welch HG, Prorok PC, O’Malley AJ, Kramer BS. Breast-Cancer Tumor Size, Overdiagnosis, and Mammography Screening Effectiveness. N Engl J Med (2016) 375(15):1438–47. doi: 10.1056/NEJMoa1600249
  22. 22. McDonald ES, Oustimov A, Weinstein SP, Synnestvedt MB, Schnall M, ConantEF. Effectiveness of Digital Breast Tomosynthesis Compared With Digital Mammography: Outcomes Analysis From 3 Years of Breast Cancer Screening. JAMA Oncol (2016) 2(6):737–43. doi: 10.1001/jamaoncol.2015.5536
  23. 23. Alsheh Ali M, Eriksson M, Czene K, Hall P, Humphreys K. Detection ofPotential Microcalcification Clusters Using Multivendor for-Presentation Digital Mammograms for Short-Term Breast Cancer Risk Estimation. Med Phys (2019) 46(4):1938–46. doi: 10.1002/mp.13450
  24. 24. S P, NK V, S S. Breast Cancer Detection Using Crow Search OptimizationBased Intuitionistic Fuzzy Clustering With Neighborhood Attraction. Asian Pac J Cancer Prev (2019) 20(1):157–65. doi: 10.31557/APJCP.2019.20.1.157
  25. 25. Jiang Y, Inciardi MF, Edwards AV, Papaioannou J. Interpretation Time Usinga Concurrent-Read Computer-Aided Detection System for Automated Breast Ultrasound in Breast Cancer Screening of Women With Dense Breast Tissue. AJR Am J Roentgenol (2018) 211(2):452–61. doi: 10.2214/AJR.18.19516
  26. 26. Fan M, Li Y, Zheng S, Peng W, Tang W, Li L. Computer-Aided Detection ofMass in Digital Breast Tomosynthesis Using a Faster Region-Based Convolutional Neural Network. Methods (2019) 166:103–11. doi: 10.1016/ j.ymeth.2019.02.010
  27. 27. Cruz-Bernal A, Flores-Barranco MM, Almanza-Ojeda DL, Ledesma S, IbarraManzano MA. Analysis of the Cluster Prominence Feature for Detecting Calcifications in Mammograms. J Healthc Eng (2018) 2018:2849567. doi: 10.1155/2018/2849567
  28. 28. Cai H, Huang Q, Rong W, Song Y, Li J, Wang J, et al. Breast Microcalcification Diagnosis Using Deep Convolutional Neural Network From Digital Mammograms. Comput Math Methods Med (2019) 2019:2717454. doi:10.1155/2019/2717454
  29. 29. Suhail Z, Denton ERE, Zwiggelaar R. Classification of Micro-Calcification in Mammograms Using Scalable Linear Fisher Discriminant Analysis. Med Biol Eng Comput (2018) 56(8):1475–85. doi: 10.1007/s11517-017-1774-z
  30. 30. Jian W, Sun X, Luo S. Computer-Aided Diagnosis of Breast Microcalcifications Based on Dual-Tree Complex Wavelet Transform. BioMed Eng Online (2012) 11:96. doi: 10.1186/1475-925X-11-96
  31. 31. Guo Y, Dong M, Yang Z, Gao X, Wang K, Luo C, et al. A New Method of Detecting Micro-Calcification Clusters in Mammograms Using Contourlet Transform and non-Linking Simplified PCNN. Comput Methods Prog BioMed (2016) 130:31–45. doi: 10.1016/j.cmpb.2016.02.019
  32. 32. Hmida M, Hamrouni K, Solaiman B, Boussetta S. Mammographic MassSegmentation Using Fuzzy Contours. Comput Methods Prog BioMed (2018) 164:131–42. doi: 10.1016/j.cmpb.2018.07.005
  33. 33. Kashyap KL, Bajpai MK, Khanna P. Globally Supported Radial Basis FunctionBased Collocation Method for Evolution of Level Set in Mass Segmentation Using Mammograms. Comput Biol Med (2017) 87:22–37. doi: 10.1016/ j.compbiomed.2017.05.015
  34. 34. Song E, Jiang L, Jin R, Zhang L, Yuan Y, Li Q. Breast Mass Segmentation inMammography Using Plane Fitting and Dynamic Programming. Acad Radiol (2009) 16(7):826–35. doi: 10.1016/j.acra.2008.11.014
  35. 35. Anderson NH, Hamilton PW, Bartels PH, Thompson D, Montironi R, SloanJM. Computerized Scene Segmentation for the Discrimination of Architectural Features in Ductal Proliferative Lesions of the Breast. J Pathol (1997) 181(4):374–80. doi: 10.1002/(SICI)1096-9896(199704)181:4<374:: AID-PATH795>3.0.CO;2-N
  36. 36. Fowler EEE, Smallwood AM, Khan NZ, Kilpatrick K, Sellers TA, Heine J.Technical Challenges in Generalizing Calibration Techniques for Breast Density Measurements. Med Phys (2019) 46(2):679–88. doi: 10.1002/mp.13325
  37. 37. Hudson S, Vik Hjerkind K, Vinnicombe S, Allen S, Trewin C, Ursin G, et al. Adjusting for BMI in Analyses of Volumetric Mammographic Density and Breast Cancer Risk. Breast Cancer Res (2018) 20(1):156. doi: 10.1186/s13058018-1078-8
  38. 38. Mohamed AA, Berg WA, Peng H, Luo Y, Jankowitz RC, Wu S. A Deep Learning Method for Classifying Mammographic Breast Density Categories. Med Phys (2018) 45(1):314–21. doi: 10.1002/mp.12683
  39. 39. Mohamed AA, Luo Y, Peng H, Jankowitz RC, Wu S. Understanding ClinicalMammographic Breast Density Assessment: A Deep Learning Perspective. J Digit Imaging (2018) 31(4):387–92. doi: 10.1007/s10278-017-0022-2
  40. 40. Le Boulc’h M, Bekhouche A, Kermarrec E, Milon A, Abdel Wahab C, Zilberman S, et al. Comparison of Breast Density Assessment Between Human Eye and Automated Software on Digital and Synthetic Mammography: Impact on Breast Cancer Risk. Diagn Interv Imaging (2020) 101(12):811–9. doi: 10.1016/j.diii.2020.07.004
  41. 41. Lehman CD, Yala A, Schuster T, Dontchos B, Bahl M, Swanson K, et al.Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation. Radiology (2019) 290(1):52–8. doi: 10.1148/radiol. 2018180694
  42. 42. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk Factors andPreventions of Breast Cancer. Int J Biol Sci (2017) 13(11):1387–97. doi: 10.7150/ijbs.21635
  43. 43. Nindrea RD, Aryandono T, Lazuardi L, Dwiprahasto I. Diagnostic Accuracyof Different Machine Learning Algorithms for Breast Cancer Risk Calculation: A Meta-Analysis. Asian Pac J Cancer Prev (2018) 19(7):1747–52. doi: 10.22034/APJCP.2018.19.7.1747
  44. 44. Sepandi M, Taghdir M, Rezaianzadeh A, Rahimikazerooni S. Assessing BreastCancer Risk With an Artificial Neural Network. Asian Pac J Cancer Prev (2018) 19(4):1017–9. doi: 10.31557/APJCP.2018.19.12.3571
  45. 45. Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A Deep LearningMammography-Based Model for Improved Breast Cancer Risk Prediction. Radiology (2019) 292(1):60–6. doi: 10.1148/radiol.2019182716
  46. 46. Teare P, Fishman M, Benzaquen O, Toledano E, Elnekave E. MalignancyDetection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement. J Digit Imaging (2017) 30(4):499–505. doi: 10.1007/s10278-017-9993-2
  47. 47. Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, et al. ASurvey of Deep-Learning Applications in Ultrasound: Artificial IntelligencePowered Ultrasound for Improving Clinical Workflow. J Am Coll Radiol (2019) 16(9 Pt B):1318–28. doi: 10.1016/j.jacr.2019.06.004
  48. 48. Wu GG, Zhou LQ, Xu JW, Wang JY, Wei Q, Deng YB, et al. Artificial Intelligence in Breast Ultrasound. World J Radiol (2019) 11(2):19–26. doi: 10.4329/wjr.v11.i2.19
  49. 49. Park HJ, Kim SM, La Yun B, Jang M, Kim B, Jang JY, et al. A Computer-AidedDiagnosis System Using Artificial Intelligence for the Diagnosis and Characterization of Breast Masses on Ultrasound: Added Value for the Inexperienced Breast Radiologist. Med (Baltimore) (2019) 98(3):e14146. doi: 10.1097/MD.0000000000014146
  50. 50. Hu Y, Guo Y, Wang Y, Yu J, Li J, Zhou S, et al. Automatic TumorSegmentation in Breast Ultrasound Images Using a Dilated Fully Convolutional Network Combined With an Active Contour Model. Med Phys (2019) 46(1):215–28. doi: 10.1002/mp.13268
  51. 51. Kumar V, Webb JM, Gregory A, Denis M, Meixner DD, Bayat M, et al.Automated and Real-Time Segmentation of Suspicious Breast Masses Using Convolutional Neural Network. PloS One (2018) 13(5):e0195816. doi: 10.1371/journal.pone.0195816
  52. 52. Feng Y, Dong F, Xia X, Hu CH, Fan Q, Hu Y, et al. An Adaptive Fuzzy CMeans Method Utilizing Neighboring Information for Breast Tumor Segmentation in Ultrasound Images. Med Phys (2017) 44(7):3752–60. doi: 10.1002/mp.12350
  53. 53. Hsu SM, Kuo WH, Kuo FC, Liao YY. Breast Tumor Classification Using Different Features of Quantitative Ultrasound Parametric Images. Int J Comput Assist Radiol Surg (2019) 14(4):623–33. doi: 10.1007/s11548-018-01908-8
  54. 54. Zhang Q, Xiao Y, Dai W, Suo J, Wang C, Shi J, et al. Deep Learning BasedClassification of Breast Tumors With Shear-Wave Elastography. Ultrasonics (2016) 72:150–7. doi: 10.1016/j.ultras.2016.08.004
  55. 55. Choi JH, Kang BJ, Baek JE, Lee HS, Kim SH. Application of Computer-AidedDiagnosis in Breast Ultrasound Interpretation: Improvements in Diagnostic Performance According to Reader Experience. Ultrasonography (2018) 37 (3):217–25. doi: 10.14366/usg.17046
  56. 56. Ciritsis A, Rossi C, Eberhard M, Marcon M, Becker AS, Boss A. AutomaticClassification of Ultrasound Breast Lesions Using a Deep Convolutional Neural Network Mimicking Human Decision-Making. Eur Radiol (2019) 29 (10):5458–68. doi: 10.1007/s00330-019-06118-7
  57. 57. Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A. Classification of Breast Cancer in Ultrasound Imaging Using a Generic Deep Learning Analysis Software: A Pilot Study. Br J Radiol (2018) 91(1083):20170576. doi: 10.1259/bjr.20170576
  58. 58. Zheng X, Yao Z, Huang Y, Yu Y, Wang Y, Liu Y, et al. Deep learningradiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun (2020) 11(1):1236. doi: 10.1038/s41467-020-15027-z
  59. 59. Sheth D, Giger ML. Artificial Intelligence in the Interpretation of Breast Cancer on MRI. J Magn Reson Imaging (2020) 51(5):1310–24. doi: 10.1002/ jmri.26878
  60. 60. Herent P, Schmauch B, Jehanno P, Dehaene O, Saillard C, Balleyguier C, et al.Detection and Characterization of MRI Breast Lesions Using Deep Learning. Diagn Interv Imaging (2019) 100(4):219–25. doi: 10.1016/j.diii.2019.02.008
  61. 61. Xu X, Fu L, Chen Y, Larsson R, Zhang D, Suo S, et al. Breast RegionSegmentation Being Convolutional Neural Network in Dynamic Contrast Enhanced MRI. Annu Int Conf IEEE Eng Med Biol Soc (2018) 2018:750–3. doi: 10.1109/EMBC.2018.8512422
  62. 62. Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C.Radiomic Versus Convolutional Neural Networks Analysis for Classification of Contrast-Enhancing Lesions at Multiparametric Breast MRI. Radiology (2019) 290(2):290–7. doi: 10.1148/radiol.2018181352
  63. 63. Gallego-Ortiz C, Martel AL. A Graph-Based Lesion Characterization andDeep Embedding Approach for Improved Computer-Aided Diagnosis of Nonmass Breast MRI Lesions. Med Image Anal (2019) 51:116–24. doi:10.1016/
  64. 64. Vidic I, Egnell L, Jerome NP, Teruel JR, Sjobakk TE, Ostlie A, et al. SupportVector Machine for Breast Cancer Classification Using Diffusion-Weighted MRI Histogram Features: Preliminary Study. J Magn Reson Imaging (2018) 47 (5):1205–16. doi: 10.1002/jmri.25873
  65. 65. Illan IA, Ramirez J, Gorriz JM, Marino MA, Avendano D, Helbich T, et al.Automated Detection and Segmentation of Nonmass-Enhancing Breast Tumors With Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Contrast Media Mol Imaging (2018) 2018:5308517. doi: 10.1155/2018/ 5308517
  66. 66. Antropova N, Abe H, Giger ML. Use of Clinical MRI Maximum IntensityProjections for Improved Breast Lesion Classification With Deep Convolutional Neural Networks. J Med Imaging (Bellingham) (2018) 5 (1):014503. doi: 10.1117/1.JMI.5.1.014503
  67. 67. Jiang Y, Edwards AV, Newstead GM. Artificial Intelligence Applied to Breast MRI for Improved Diagnosis. Radiology (2021) 298(1):38–46. doi: 10.1148/ radiol.2020200292
  68. 68. Meyer-Base A, Morra L, Meyer-Base U, Pinker K. Current Status and FuturePerspectives of Artificial Intelligence in Magnetic Resonance Breast Imaging. Contrast Media Mol Imaging (2020) 2020:6805710. doi: 10.1155/2020/ 6805710
  69. 69. Hao W, Gong J, Wang S, Zhu H, Zhao B, Peng W. Application of MRIRadiomics-Based Machine Learning Model to Improve Contralateral BIRADS 4 Lesion Assessment. Front Oncol (2020) 10:531476. doi: 10.3389/ fonc.2020.531476
  70. 70. Song SE, Seo BK, Cho KR, Woo OH, Son GS, Kim C, et al. Computer-aideddetection (CAD) system for breast MRI in assessment of local tumor extent, nodal status, and multifocality of invasive breast cancers: preliminary study. Cancer Imaging (2015) 15(1):1. doi: 10.1186/s40644-015-0036-2
  71. 71. Tahmassebi A, Wengert GJ, Helbich TH, Bago-Horvath Z, Alaei S, Bartsch R,et al. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients. Invest Radiol (2019) 54(2):110-7. doi: 10.1097/RLI.0000000000000518
  72. 72. Morgan MB, Mates JL. Applications of Artificial Intelligence in Breast Imaging. Radiol Clin North Am (2021) 59(1):139–48. doi: 10.1016/j.rcl.2020.08.007
  73. 73. Hupse R, Samulski M, Lobbes MB, Mann RM, Mus R, den Heeten GJ, et al.Computer-Aided Detection of Masses at Mammography: Interactive Decision Support Versus Prompts. Radiology (2013) 266(1):123–9. doi: 10.1148/ radiol.12120218
  74. 74. Quellec G, Lamard M, Cozic M, Coatrieux G, Cazuguel G. Multiple-InstanceLearning for Anomaly Detection in Digital Mammography. IEEE Trans Med Imaging (2016) 35(7):1604–14. doi: 10.1109/TMI.2016.2521442
  75. 75. Mendelson EB. Artificial Intelligence in Breast Imaging: Potentials and Limitations. AJR Am J Roentgenol (2019) 212(2):293–9. doi: 10.2214/ AJR.18.20532
  76. 76. Qi X, Zhang L, Chen Y, Pi Y, Chen Y, Lv Q, et al. Automated Diagnosis ofBreast Ultrasonography Images Using Deep Neural Networks. Med Image Anal (2019) 52:185–98. doi: 10.1016/
  77. 77. Kooi T, Litjens G, van Ginneken B, Gubern-Merida A, Sanchez CI, Mann R,et al. Large Scale Deep Learning for Computer Aided Detection of Mammographic Lesions. Med Image Anal (2017) 35:303–12. doi: 10.1016/
  78. 78. Kim J, Kim HJ, Kim C, Kim WH. Artificial Intelligence in Breast Ultrasonography. Ultrasonography (2021) 40(2):183–90. doi: 10.14366/ usg.20117
  79. 79. Sechopoulos I, Teuwen J, Mann R. Artificial Intelligence for Breast Cancer Detection in Mammography and Digital Breast Tomosynthesis: State of the Art. Semin Cancer Biol (2020) 72:214-25. doi: 10.1016/j.semcancer.2020.06.002
  80. 80. Skaane P, Bandos AI, Niklason LT, Sebuodegard S, Osteras BH, Gullien R, et al. Digital Mammography Versus Digital Mammography Plus Tomosynthesis in Breast Cancer Screening: The Oslo Tomosynthesis Screening Trial. Radiology (2019) 291(1):23–30. doi: 10.1148/radiol.2019182394
  81. 81. Lotter W, Diab AR, Haslam B, Kim JG, Grisot G, Wu E, et al. Robust BreastCancer Detection in Mammography and Digital Breast Tomosynthesis Using an Annotation-Efficient Deep Learning Approach. Nat Med (2021) 27(2):244– 9. doi: 10.1038/s41591-020-01174-9
  82. 82. Zhang Q, Song S, Xiao Y, Chen S, Shi J, Zheng H. Dual-Mode ArtificiallyIntelligent Diagnosis of Breast Tumors in Shear-Wave Elastography and BMode Ultrasound Using Deep Polynomial Networks. Med Eng Phys (2019) 64:1–6. doi: 10.1016/j.medengphy.2018.12.005
  83. 83. Adachi M, Fujioka T, Mori M, Kubota K, Kikuchi Y, Xiaotong W, et al.Detection and Diagnosis of Breast Cancer Using Artificial Intelligence Based Assessment of Maximum Intensity Projection Dynamic Contrast-Enhanced Magnetic Resonance Images. Diag (Basel) (2020) 10(5):330. doi: 10.3390/ diagnostics10050330
  84. 84. Dalmis MU, Gubern-Merida A, Vreemann S, Bult P, Karssemeijer N, Mann R,et al. Artificial Intelligence-Based Classification of Breast Lesions Imaged With a Multiparametric Breast MRI Protocol With Ultrafast DCE-MRI, T2, and CT scan.