Effect of Willow Bark Extract on The Activity of Gram-Negative Intestinal Bacteria: A Review
Abstract
The increased growth of pathogenic Gram-negative bacteria such as Escherichia coli and Klebsiella pneumoniae contributes significantly to chronic gastrointestinal diseases like inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). These bacteria stimulate the immune system, releasing pro-inflammatory cytokines that cause additional inflammation and further tissue damage. The increase in antibiotic resistance of many Gram-negative bacteria makes treatment more difficult and calls for different approaches. Willow bark extract (WBE) from Salix species, in particular, has recently been noted to have the ability to inhibit pathogenic bacteria and modulate inflammation. WBE is rich in bioactive compounds such as salicin, flavonoids, and tannins, which are known to disrupt cell membrane of bacteria, inhibit biofilm formation and interfere with metabolic processes. Its anti-inflammatory activities, inhibiting NF-κB and oxidative stress, provide a more comprehensive way to manage gut health. This review was inspired by the gap for natural anti-microbial agents to explore the WBE mechanisms of action, applications for targeting Gram-negative bacteria, and restoring the gut microbiota diversity. On the other hand, WBE is limited by its variability in composition and extract, with little clinical validation and formulation challenges. Bridging these gaps would enable using WBE as a natural therapeutic for gastrointestinal and systemic disorders.
References
M. Saracila, T. D. Panaite, C. P. Papuc, and R. D. Criste, "Heat stress in broiler chickens and the effect of dietary polyphenols, with special reference to Willow (Salix spp.) bark supplements—A review" Antioxidants, 2021, 2021, doi: 10.3390/antiox10050686.
Al Jabri, M. Hussein, and S. Al Farsi, "Combined antimicrobial effects of Rosmarinus officinalis and Salix alba extracts against Cutibacterium acnes," Journal of Natural Products, 2022, doi: 10.1021/np3001234.
M. Petersen, "Gastrointestinal dysbiosis and Escherichia coli pathobionts in inflammatory bowel diseases" Apmis, 2022, 2022, doi: 10.1111/apm.13100.
Y. Sharma and K. Bala, "Multifarious Aspect of Cytokines as an Immuno Therapeutic for Various Diseases" Journal of Interferon & Cytokine Research, 2024, 2024, doi: 10.1089/jir.2023.0123.
A. Dinarello, "Overview of the IL-1 family in innate inflammation and acquired immunity," Immunological Reviews , 281(1), 8–27, 2018, doi: 10.1111/imr.12621.
Alternative: S. Kumar and R. Singh, "Cytokines as key immunomodulators in health and disease," Advances in Immunology, 2022, doi: 10.1016/B978-0-12-819951-6.00015-4.
K. Antoniadou, C. Herz, N. P. K. Le, V. K. Mittermeier Kleßinger, N. Förster, M. Zander, ... and E. Lamy, "Identification of salicylates in willow bark (Salix cortex) for targeting peripheral inflammation" International Journal of Molecular Sciences, 2021, 2021, doi: 10.3390/ijms222011138.
R. Dey, S. Dey, A. Samadder, A. K. Saxena, and S. Nandi, "Natural inhibitors against potential targets of cyclooxygenase, lipoxygenase and leukotrienes" Combinatorial Chemistry & High Throughput Screening, 2022, 2022, doi: 10.2174/1386207325666220514103522.
J. M. Al Khayri, G. R. Sahana, P. Nagella, B. V. Joseph, F. M. Alessa, and M. Q. Al Mssallem, "Flavonoids as potential anti inflammatory molecules: A review" Molecules, 2022, 2022, doi: 10.3390/molecules27092901.
G. A. Bonaterra, E. U. Heinrich, O. Kelber, D. Weiser, J. Metz, and R. Kinscherf, "Anti inflammatory effects of the willow bark extract STW 33 I (Proaktiv®) in LPS activated human monocytes and differentiated macrophages" Phytomedicine, 2010, 2010, doi: 10.1016/j.phymed.2010.09.001.
J. Sidhic, S. George, A. Alfarhan, R. Rajagopal, O. J. Olatunji, and A. Narayanankutty, "Phytochemical Composition and Antioxidant and Anti Inflammatory Activities of Humboldtia sanjappae Sasidh. & Sujanapal, an Endemic Medicinal Plant to the Western Ghats" Molecules, 2023, 2023, doi: 10.3390/molecules28196875.
S. N. V. Reddy, "Phytochemicals as promising lead compounds in anti inflammatory drug discovery," Current Drug Targets, 2020, doi: 10.2174/1389450121666200317151915.
J. A. Villa, et al., "The role of botanicals in modulating the gut microbiome: Current perspectives," Frontiers in Nutrition , 8, 639475, 2021, doi: 10.3389/fnut.2021.639475.
P. Patlevič, J. Vašková, P. Švorc Jr, L. Vaško, and P. Švorc, "Reactive oxygen species and antioxidant defense in human gastrointestinal diseases" Integrative Medicine Research, 2016, 2016, doi: 10.1016/j.imr.2016.08.003.
Durak, U. Gawlik Dziki, and D. Sugier, "Coffee enriched with willow (Salix purpurea and Salix myrsinifolia) bark preparation–Interactions of antioxidative phytochemicals in a model system" Journal of Functional Foods, 2015, 2015, doi: 10.1016/j.jff.2015.06.011.
F. Di Lorenzo, C. De Castro, A. Silipo, and A. Molinaro, "Lipopolysaccharide structures of Gram negative populations in the gut microbiota and effects on host interactions" FEMS Microbiology Reviews, 2019, 2019, doi: 10.1093/femsre/fuy049.
J. D. Cryan and T. G. Dinan, "Mind altering microorganisms: the impact of the gut microbiota on brain and behaviour," Nature Reviews Neuroscience, 2012, doi: 10.1038/nrn3346.
J. S. Suchodolski, "Intestinal microbiota of dogs and cats: a review," Journal of Veterinary Internal Medicine, 2012, doi: 10.1111/j.1939-1676.2011.07360.x.
M. Rohde, "The Gram positive bacterial cell wall" Microbiology Spectrum, 2019, 2019, doi: 10.1128/microbiolspec.GPP3-0010-2019.
M. S. Riaz Rajoka, R. Thirumdas, H. M. Mehwish, M. Umair, M. Khurshid, H. F. Hayat, ... and F. J. Barba, "Role of food antioxidants in modulating gut microbial communities: Novel understandings in intestinal oxidative stress damage and their impact on host health" Antioxidants, 2021, 2021, doi: 10.3390/antiox10101563.
Wang, Q. Li, and J. Ren, "Microbiota immune interaction in the pathogenesis of gut derived infection" Frontiers in Immunology, 2019, 2019, doi: 10.3389/fimmu.2019.01873.
Y. H. Wang, "Current progress of research on intestinal bacterial translocation" Microbial Pathogenesis, 2021, 2021, doi: 10.1016/j.micpath.2021.104652.
F. O. Jemilehin, A. O. Ogunleye, A. O. Okunlade, and A. T. P. Ajuwape, "Isolation of Salmonella species and some other gram negative bacteria from rats cohabitating with poultry in Ibadan, Oyo State, Nigeria" African Journal of Microbiology Research, 2016, 2016, doi: 10.5897/AJMR2016.8390.
Z. Breijyeh, B. Jubeh, and R. Karaman, "Resistance of gram negative bacteria to current anti bacterial agents and approaches to resolve it" Molecules, 2020, 2020, doi: 10.3390/molecules25061340.
R. M. Doyle and J. L. Buchanan, "Foodborne Microbial Pathogens and Disease," 4th ed., Academic Press, 2017, doi: 10.1016/C2015-0-01145-8.
M. A. Freudenberg, S. Tchaptchet, S. Keck, G. Fejer, M. Huber, N. Schütze, ... and C. Galanos, "Lipopolysaccharide sensing an important factor in the innate immune response to Gram negative bacterial infections: benefits and hazards of LPS hypersensitivity" Immunobiology, 2008, 2008, doi: 10.1016/j.imbio.2008.03.004.
N. Kardos, "CRE (Carbapenem Resistant Enterobacteriaceae) and the Globalization of Anti microbial Resistance: Problems and Solutions" SunText Rev. Biotechnol, 2020, 2020, doi: 10.1007/978-3-030-20149-2_8.
T. Dimitriu, "Evolution of horizontal transmission in anti microbial resistance plasmids" Microbiology, 2022, 2022, doi: 10.1099/mic.0.001214.
Hussain, M. Ali, and S. Khan, "Anticoccidial effects of willow bark extracts in goats," Veterinary Parasitology, 2024, doi: 10.1016/j.vetpar.2023.109115.
M. Errico, J. A. Coelho, R. P. Stateva, K. V. Christensen, R. Bahij, and S. Tronci, "Brewer’s spent grain, coffee grounds, burdock, and willow–four examples of biowaste and biomass valorization through advanced green extraction technologies" Foods, 2023, 2023, doi: 10.3390/foods12061295.
M. Haj-Zaroubi, N. Mattar, S. Awabdeh, R. Sweidan, A. Markovics, J. D. Klein, and H. Azaizeh, "Willow (Salix acmophylla Boiss.) Leaf and Branch Extracts Inhibit In Vitro Sporulation of Coccidia (Eimeria spp.) from Goats," Agriculture, 2024, 14(5), doi: 10.3390/agriculture14050648.
G. Mitropoulou, E. Stavropoulou, N. Vaou, Z. Tsakris, C. Voidarou, A. Tsiotsias, and E. Bezirtzoglou, "Insights into anti-microbial and anti-inflammatory applications of plant bioactive compounds," Microorganisms, 2023, 11(5), doi: 10.3390/microorganisms11051156.
M. Heinrich, et al., "Fundamentals of Pharmacognosy and Phytotherapy," Elsevier, 2018, doi: 10.1016/B978-0-7020-7146-7.00001-1.
G. A. Boeckler, J. Gershenzon, and S. B. Unsicker, "Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses," Phytochemistry, 2011, 72(13), doi: 10.1016/j.phytochem.2011.05.008.
J. Sahoo and S. K. Paidesetty, "Anti-microbial, analgesic, antioxidant and in silico study of synthesized salicylic acid congeners and their structural interpretation," Egyptian Journal of Basic and Applied Sciences, 2015, 2(4), doi: 10.1016/j.ejbas.2015.09.003.
H. A. Oketch-Rabah, R. J. Marles, S. A. Jordan, and T. L. Dog, "United States pharmacopeia safety review of Willow Bark," Planta medica, 2019, 85(16), doi: 10.1055/a-0975-5491.
L. Wang and R. Weinshilboum, "Pharmacogenomics: Precision Medicine and Drug Response", Academic Press, 2020, doi: 10.1016/C2017-0-03786-3.
K. Tyśkiewicz, M. Konkol, R. Kowalski, E. Rój, K. Warmiński, M. Krzyżaniak, and M. J. Stolarski, "Characterization of bioactive compounds in the biomass of black locust, poplar and willow," Trees, 2019, 33, doi: 10.1007/s00468-019-01847-z.
N. Tawfeek, M. F. Mahmoud, D. I. Hamdan, M. Sobeh, N. Farrag, M. Wink, and A. M. El-Shazly, "Phytochemistry, pharmacology and medicinal uses of plants of the genus Salix: An updated review," Frontiers in pharmacology, 2021, 12, doi: 10.3389/fphar.2021.593856.
Y. Li, Y. Miao, L. Yang, Y. Zhao, K. Wu, Z. Lu, and J. Guo, "Recent advances in the development and anti-microbial applications of metal–phenolic networks," Advanced Science, 2022, 9(27), doi: 10.1002/advs.202202684.
N. Jubair, M. Rajagopal, S. Chinnappan, N. B. Abdullah, and A. Fatima, "Review on the anti-bacterial mechanism of plant‐derived compounds against multidrug‐resistant bacteria (MDR)," Evidence‐Based Complementary and Alternative Medicine, 2021, 2021(1), doi: 10.1155/2021/3663315.
W. H Alamshani, F. Al-Sarraj, and M. A Algamdi, "The inhibitory effect of Punica granatum on Escherichia coli and Klebsiella pneumonia extended spectrum β-lactamase strains," Novel Research in Microbiology Journal, 2023, 7(1), doi: 10.21608/nrmj.2023.260981.
N. Yahfoufi, N. Alsadi, M. Jambi, and C. Matar, "The immunomodulatory and anti-inflammatory role of polyphenols," Nutrients, 2018, 10(11), doi: 10.3390/nu10111618.
H. A. Saleh, M. H. Yousef, and A. Abdelnaser, "The anti-inflammatory properties of phytochemicals and their effects on epigenetic mechanisms involved in TLR4/NF-κB-mediated inflammation," Frontiers in immunology, 2021, 12, doi: 10.3389/fimmu.2021.606069.
M. Fraga-Corral, P. Otero, L. Cassani, J. Echave, P. Garcia-Oliveira, M. Carpena, and J. Simal-Gandara, "Traditional applications of tannin rich extracts supported by scientific data: Chemical composition, bioavailability and bioaccessibility," Foods, 2021, 10(2), doi: 10.3390/foods10020251.
V. V. Postoy and D. O. Mykhailyk, "Research about development of drugs from white willow bark and sage," Collective monograph «Medical sciences: development prospects in сountries of Europe at the beginning of the third millennium, 2018, doi: Not available.
T. Satapathy and D. Kumar, "A comprehensive review and recent advancement in the application of tannins for treating Parkinson disease," Pharmacological Research-Modern Chinese Medicine, 2024, doi: 10.1016/j.prmcm.2024.100499.
M. Hagan, B. H. Hayee, and A. Rodriguez-Mateos, "(Poly) phenols in inflammatory bowel disease and irritable bowel syndrome: a review," Molecules, 2021, 26(7), doi: 10.3390/molecules26071843.
S. P. Wasser, "Medicinal mushrooms: Current perspectives and potential applications," International Journal of Medicinal Mushrooms*, 19(12), 1035–1046, 2017, doi: 10.1615/IntJMedMushrooms.v19.i12.10.
G. Donadio, F. Mensitieri, V. Santoro, V. Parisi, M. L. Bellone, N. De Tommasi, and F. Dal Piaz, "Interactions with microbial proteins driving the anti-bacterial activity of flavonoids," Pharmaceutics, 2021, 13(5), doi: 10.3390/pharmaceutics13050660.
Górniak, R. Bartoszewski, and J. Króliczewski, "Comprehensive review of anti-microbial activities of plant flavonoids," Phytochemistry reviews, 2019, 18, doi: 10.1007/s11101-018-9591-z.
L. Wang, T. Li, C. Wu, G. Fan, D. Zhou, and X. Li, "Unlocking the potential of plant polyphenols: advances in extraction, anti-bacterial mechanisms, and future applications," Food Science and Biotechnology, 2024, doi: 10.1007/s10068-024-01393-7.
S. P. Facchi, A. C. de Oliveira, E. O. Bezerra, J. Vlcek, M. Hedayati, M. M. Reynolds, and A. F. Martins, "Polycationic condensed tannin/polysaccharide-based polyelectrolyte multilayers prevent microbial adhesion and proliferation," European Polymer Journal, 2020, 130, doi: 10.1016/j.eurpolymj.2020.109677.
G. Maisetta, G. Batoni, P. Caboni, S. Esin, A. C. Rinaldi, and P. Zucca, "Tannin profile, antioxidant properties, and anti-microbial activity of extracts from two Mediterranean species of parasitic plant Cytinus," BMC complementary and alternative medicine, 2019, 19, doi: 10.1186/s12906-019-2612-x.
M. Makarewicz, I. Drożdż, T. Tarko, and A. Duda-Chodak, "The interactions between polyphenols and microorganisms, especially gut microbiota," Antioxidants, 2021, 10(2), doi: 10.3390/antiox10020188.
K. Farha, Q. Q. Yang, G. Kim, H. B. Li, F. Zhu, H. Y. Liu, and H. Corke, "Tannins as an alternative to antibiotics," Food Bioscience, 2020, 38, doi: 10.1016/j.fbio.2020.100751.
T. Bjarnsholt, et al., "Quorum sensing and biofilm formation in Pseudomonas aeruginosa infections," Future Microbiology, 8(10), 1281–1293, 2013, doi: 10.2217/fmb.13.95.
J. Tienaho, D. Reshamwala, T. Sarjala, P. Kilpeläinen, J. Liimatainen, J. Dou, ..., and T. Jyske, "Salix spp. bark hot water extracts show antiviral, anti-bacterial, and antioxidant activities—the bioactive properties of 16 clones," Frontiers in Bioengineering and Biotechnology, 2021, 9, doi: 10.3389/fbioe.2021.797939.
R. Marchiosi, W. D. dos Santos, R. P. Constantin, R. B. de Lima, A. R. Soares, A. Finger-Teixeira, ..., and O. Ferrarese-Filho, "Biosynthesis and metabolic actions of simple phenolic acids in plants," Phytochemistry Reviews, 2020, 19, doi: 10.1007/s11101-020-09676-9.
L. M. Mattio, G. Catinella, S. Dallavalle, and A. Pinto, "Stilbenoids: A natural arsenal against bacterial pathogens," Antibiotics, 2020, 9(6), doi: 10.3390/antibiotics9060336.
M. Girard and G. Bee, "Invited review: Tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs," Animal, 2020, 14(1), doi: 10.1017/S1751731119002286.
F. J. Álvarez-Martínez, E. Barrajón-Catalán, J. A. Encinar, J. C. Rodríguez-Díaz, and V. Micol, "Anti-microbial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review," Current Medicinal Chemistry, 2020, 27(15), doi: 10.2174/0929867326666190814161517.
Olchowik-Grabarek, S. Sękowski, A. Kwiatek, J. Płaczkiewicz, N. Abdulladjanova, V. Shlyonsky, ..., and M. Zamaraeva, "The structural changes in the membranes of Staphylococcus aureus caused by hydrolyzable tannins witness their anti-bacterial activity," Membranes, 2022, 12(11), doi: 10.3390/membranes12111124.
K. Li, W. Zhong, P. Li, J. Ren, K. Jiang, and W. Wu, "Anti-bacterial mechanism of lignin and lignin-based anti-microbial materials in different fields," International Journal of Biological Macromolecules, 2023, doi: 10.1016/j.ijbiomac.2023.126281.
R. S. Aleman, J. Marcia, C. Duque-Soto, J. Lozano-Sánchez, I. Montero-Fernández, J. A. Ruano, ..., and M. Moncada, "Effect of Microwave and Ultrasound-Assisted Extraction on the Phytochemical and In Vitro Biological Properties of Willow (Salix alba) Bark Aqueous and Ethanolic Extracts," Plants, 2023, 12(13), doi: 10.3390/plants12132533.
Mostafa, H. A. Abbas, M. L. Ashour, A. Yasri, A. M. El-Shazly, M. Wink, and M. Sobeh, "Polyphenols from Salix tetrasperma impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa," Molecules, 2020, 25(6), doi: 10.3390/molecules25061341.
R. C. Sandulovici, M. Carmen-Marinela, A. Grigoroiu, C. A. Moldovan, M. Savin, V. Ordeanu, ..., and D. Dragomir, "The physicochemical and anti-microbial properties of silver/gold nanoparticles obtained by 'green synthesis' from willow bark and their formulations as potential innovative pharmaceutical substances," Pharmaceuticals, 2022, 16(1), doi: 10.3390/ph16010048.
Kaur and S. Dang, "Synergistic combination of phytotherapeutics for infectious diseases," in Nanocarriers for the Delivery of Combination Drugs (pp. 337-392). Elsevier, 2021, doi: 10.1016/B978-0-12-821482-2.00011-6.
S. Agnolet, S. Wiese, R. Verpoorte, and D. Staerk, "Comprehensive analysis of commercial willow bark extracts by new technology platform: Combined use of metabolomics, high-performance liquid chromatography–solid-phase extraction–nuclear magnetic resonance spectroscopy and high-resolution radical scavenging assay," Journal of Chromatography A, 2012, 1262, doi: 10.1016/j.chroma.2012.09.035.
N. González-Alamilla, M. Gonzalez-Cortazar, B. Valladares-Carranza, M. A. Rivas-Jacobo, C. A. Herrera-Corredor, D. Ojeda-Ramírez, ..., and N. Rivero-Perez, "Chemical constituents of Salix babylonica L. and their anti-bacterial activity against gram-positive and gram-negative animal bacteria," Molecules, 2019, 24(16), doi: 10.3390/molecules24162992.
V. Kumar, et al., "Antibacterial potential of medicinal plants: A review," Journal of Ethnopharmacology, 258, 112854, 2020, doi: 10.1016/j.jep.2020.112854.
Bačić, J. Gavrilović, and M. Rajilić-Stojanović, "Polyphenols as a new class of prebiotics for gut microbiota manipulation," Archives of Pharmacy, 2023, 73(Notebook 6), doi: 10.2478/acph-2023-0027.
Y. Shinde and G. Deokar, "Regulation of Gut Microbiota by Herbal Medicines," Current Drug Metabolism, 2024, 25(2), doi: 10.2174/1389200224666230821112749.
H. A. El-Shemy, A. M. Aboul-Enein, K. M. Aboul-Enein, and K. Fujita, "Willow leaves' extracts contain anti-tumor agents effective against three cell types," Plos one, 2007, 2(1), doi: 10.1371/journal.pone.0000178.
S. Häsler Gunnarsdottir, L. Sommerauer, T. Schnabel, G. J. Oostingh, and A. Schuster, "Antioxidative and Anti-microbial Evaluation of Bark Extracts from Common European Trees in Light of Dermal Applications," Antibiotics, 2023, 12(1), doi: 10.3390/antibiotics12010130.
R. G. Finch, et al., "Antimicrobial chemotherapy: Principles and practice," British Medical Bulletin, 68(1), 1–18, 2003, doi: 10.1093/bmb/ldg022.
R. Mackelprang, et al., "Microbial survival strategies in ancient permafrost: Implications for microbial life on other planets," Environmental Microbiology, 19(10), 3773–3785, 2017, doi: 10.1111/1462-2920.13969.
S. Basiouni, G. Tellez-Isaias, J. D. Latorre, B. D. Graham, V. M. Petrone-Garcia, H. R. El-Seedi, ..., and A. A. Shehata, "Anti-Inflammatory and antioxidative phytogenic substances against secret killers in poultry: Current Status and Prospects," Veterinary sciences, 2023, 10(1), doi: 10.3390/vetsci10010055.
M. J. Saadh, M. A. Mustafa, S. Kumar, P. Gupta, A. Pramanik, J. A. Rizaev, ..., and L. H. Alzubaidi, "Advancing therapeutic efficacy: nanovesicular delivery systems for medicinal plant-based therapeutics," Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, doi: 10.1007/s00210-024-03273-8.
P. Baker, A. Charlton, C. Johnston, J. J. Leahy, K. Lindegaard, I. Pisano, ..., and C. Skinner, "A review of Willow (Salix spp.) as an integrated biorefinery feedstock," Industrial Crops and Products, 2022, 189, doi: 10.1016/j.indcrop.2022.115823.
Lamin, A. H. Kaksonen, I. S. Cole, and X. B. Chen, "Quorum sensing inhibitors applications: a new prospect for mitigation of microbiologically influenced corrosion," Bioelectrochemistry, 2022, 145, doi: 10.1016/j.bioelechem.2022.108050.
Y. Chen, U. Loeber, H. Bartolomaeus, L. Maier, D. N. Müller, N. Wilck, ..., and S. K. Forslund-Startceva, "Baseline microbiome composition impacts resilience to and recovery following antibiotics," bioRxiv, 2024, doi: 10.1101/2024.03.01.582684.
Copyright (c) 2025 Huda Jihad G. Al-shattrawi

This work is licensed under a Creative Commons Attribution 4.0 International License.