Exploring the Genetic Variability of Escherichia coli Pathotypes in Urinary Tract Infections: Implications for Diagnostics and Treatment
Abstract
Urinary tract infections (UTIs), primarily caused by Escherichia coli (E. coli), represent a significant global health concern due to their prevalence and increasing antibiotic resistance. This study explores the genetic variability of E. coli pathotypes, focusing on their virulence factors and resistance mechanisms. Utilizing a comprehensive review of molecular data, the research identifies key virulence traits, such as adhesins and toxins, and their role in disease progression. Advanced diagnostic tools, including whole-genome sequencing and molecular techniques, are evaluated for their potential to enhance the detection of pathogenic strains and inform precision medicine. The findings underscore the emergence of multidrug-resistant (MDR) strains, attributed to horizontal gene transfer and adaptive evolutionary processes. Therapeutic strategies, including phage therapy and anti-virulence agents, are discussed as promising alternatives to combat MDR strains. By integrating genomic insights into clinical practice, this study highlights the need for tailored diagnostic and therapeutic approaches to mitigate the growing threat of antimicrobial resistance in UTI-causing E. coli. These findings have significant implications for improving patient outcomes and guiding future research in microbial pathogenesis and treatment.
References
Aletaha, D. (2020). Precision medicine and management of rheumatoid arthritis. Journal of Autoimmunity. [HTML]
Arconada Nuin, E., Vilken, T., Xavier, B. B., Doua, J., Morrow, B., Geurtsen, J., ... & Van Puyvelde, S. (2024). A microbiological and genomic perspective of globally collected Escherichia coli from adults hospitalized with invasive E. coli disease. Journal of Antimicrobial Chemotherapy, 79(9), 2142-2151. oup.com
Bader, M. S., Loeb, M., Leto, D., & Brooks, A. A. (2020). Treatment of urinary tract infections in the era of antimicrobial resistance and new antimicrobial agents. Postgraduate Medicine. academia.edu
Ballesteros-Monrreal, M. G., Arenas-Hernández, M. M., Barrios-Villa, E., Juarez, J., Álvarez-Ainza, M. L., Taboada, P., ... & Valencia, D. (2021). Bacterial morphotypes as important traits for uropathogenic E. coli diagnostic; a virulence-phenotype-phylogeny study. Microorganisms, 9(11), 2381. mdpi.com
Barua, R. (2023). Site-specificity of Escherichia coli in the lower gastrointestinal tract of humans. anu.edu.au
Becerril‐Montekio, V., García‐Bello, L. A., Torres‐Pereda, P., Alcalde‐Rabanal, J., Reveiz, L., & Langlois, E. V. (2022). Collaboration between health system decision makers and professional researchers to coproduce knowledge, a scoping review. The International Journal of Health Planning and Management, 37, 45-58. [HTML]
Behzadi, P., García-Perdomo, H. A., Autrán Gómez, A. M., Pinheiro, M., & Sarshar, M. (2023). Uropathogens, urinary tract infections, the host-pathogen interactions and treatment. Frontiers in Microbiology, 14, 1183236. frontiersin.org
Buberg, M. L. (2023). Extended spectrum cephalosporin-resistant E. coli from poultry: virulence-associated traits and their zoonotic potential. unit.no
Bunduki, G. K., Heinz, E., Phiri, V. S., Noah, P., Feasey, N., & Musaya, J. (2021). Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: a systematic review and meta-analysis. BMC Infectious Diseases, 21, 1-13. springer.com
Cai, T., Novelli, A., Tascini, C., & Stefani, S. (2023). Rediscovering the value of fosfomycin trometamol in the era of antimicrobial resistance: A systematic review and expert opinion. International Journal of Antimicrobial Agents, 106983. sciencedirect.com
Carpenter, R. E. (2024). Beyond Standard Urine Culture: Advanced Molecular Testing for Urinary Tract Infections. uttyler.edu
Choi, H. J., Jeong, S. H., Shin, K. S., Kim, Y. A., Kim, Y. R., Kim, H. S., ... & Yoo, J. S. (2022). Characteristics of Escherichia coli urine isolates and risk factors for secondary bloodstream infections in patients with urinary tract infections. Microbiology Spectrum, 10(4), e01660-22. asm.org
Dadi, B. R., Abebe, T., Zhang, L., Mihret, A., Abebe, W., & Amogne, W. (2020). Distribution of virulence genes and phylogenetics of uropathogenic Escherichia coli among urinary tract infection patients in Addis Ababa, Ethiopia. BMC Infectious Diseases, 20, 1-12. springer.com
Del Fatti, C. (2023). Effect of the urine micro-environment on the genome, evolution and behaviour of strains of Enterococcus involved in treatment-resistant urinary tract infection. ucl.ac.uk
El-Mahdy, R., Mahmoud, R., & Shrief, R. (2021). Characterization of E. coli Phylogroups Causing Catheter-Associated Urinary Tract Infection. Infection and Drug Resistance. tandfonline.com
Elshimy, R., Zedan, H., Elmorsy, T. H., & Khattab, R. A. (2023). Prevalence and In Vivo Assessment of Virulence in Shiga Toxin-Producing Escherichia coli Clinical Isolates from Greater Cairo Area. Microbial Drug Resistance, 29(9), 407-415. [HTML]
Firoozeh, F., Zibaei, M., Badmasti, F., & Khaledi, A. (2022). Virulence factors, antimicrobial resistance and the relationship between these characteristics in uropathogenic Escherichia coli. Gene Reports. [HTML]
Françoise, M., Frambourt, C., Goodwin, P., Haggerty, F., Jacques, M., Lama, M. L., ... & Stüwe, L. (2022). Evidence based policy making during times of uncertainty through the lens of future policy makers: four recommendations to harmonise and guide health policy making in the future. Archives of Public Health, 80(1), 140. springer.com
Geurtsen, J., de Been, M., Weerdenburg, E., Zomer, A., McNally, A., & Poolman, J. (2022). Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiology Reviews, 46(6), fuac031. oup.com
Grey, B., Upton, M., & Joshi, L. T. (2023). Urinary tract infections: a review of the current diagnostics landscape. Journal of Medical Microbiology, 72(11), 001780. microbiologyresearch.org
Harris, M., & Fasolino, T. (2022). New and emerging technologies for the diagnosis of urinary tract infections. Journal of Laboratory Medicine. degruyter.com
Holmes, C. L., Albin, O. R., Mobley, H. L., & Bachman, M. A. (2024). Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention. Nature Reviews Microbiology, 1-15. [HTML]
Jalil, M. B., & Al Atbee, M. Y. N. (2022). The prevalence of multiple drug resistance Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infections. Journal of Clinical Laboratory Analysis. wiley.com
Joya, M., Aalemi, A. K., & Baryali, A. T. (2022). Prevalence and antibiotic susceptibility of the common bacterial uropathogen among UTI patients in French Medical Institute for Children. Infection and Drug Resistance. tandfonline.com
Kim, B., Kim, J. H., & Lee, Y. (2022). Virulence factors associated with Escherichia coli bacteremia and urinary tract infection. Annals of Laboratory Medicine. nih.gov
Larramendy, S., Deglaire, V., Dusollier, P., Fournier, J. P., Caillon, J., Beaudeau, F., & Moret, L. (2020). Risk factors of extended-spectrum beta-lactamases-producing Escherichia coli community-acquired urinary tract infections: a systematic review. Infection and Drug Resistance, 3945-3955. tandfonline.com
Li, D., Reid, C. J., Kudinha, T., Jarocki, V. M., & Djordjevic, S. P. (2020). Genomic analysis of trimethoprim-resistant extraintestinal pathogenic Escherichia coli and recurrent urinary tract infections. Microbial Genomics, 6(12), e000475. microbiologyresearch.org
Morales, G., Abelson, B., Reasoner, S., Miller, J., Earl, A. M., Hadjifrangiskou, M., & Schmitz, J. (2023). The role of mobile genetic elements in virulence factor carriage from symptomatic and asymptomatic cases of Escherichia coli bacteriuria. Microbiology Spectrum, 11(3), e04710-22. asm.org
Murgia, L. (2020). Development of a new medical device for the diagnosis and management of Urinary Tract Infections (UTIs). uniroma3.it
Nascimento, J. A., Santos, F. F., Valiatti, T. B., Santos-Neto, J. F., M. Santos, A. C., Cayô, R., ... & AT Gomes, T. (2021). Frequency and diversity of hybrid Escherichia coli strains isolated from urinary tract infections. Microorganisms, 9(4), 693. mdpi.com
Nguyen, D. T. Susceptibility of Escherichia coli Isolated from the Urine of Patients with Urinary Tract Infection in Vietnam to Trimethoprim-Sulfamethoxazole, Nitrofurantoin, Fosfomycin, Aminoglycosides, and Fluoroquinolones: A Systematic Review and Meta-Analysis. SSRN.
Noor, N. M., Sousa, P., Paul, S., & Roblin, X. (2022). Early diagnosis, early stratification, and early intervention to deliver precision medicine in IBD. Inflammatory Bowel Diseases, 28(8), 1254-1264. oup.com
Radera, S., Srivastava, S., & Agarwal, J. (2022). Virulence genotyping and multidrug resistance pattern of Escherichia coli isolated from community-acquired and hospital-acquired urinary tract infections. Cureus. nih.gov
Ramos, S., Silva, V., Dapkevicius, M. D. L. E., Caniça, M., Tejedor-Junco, M. T., Igrejas, G., & Poeta, P. (2020). Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals, 10(12), 2239. mdpi.com
Rozwadowski, M., & Gawel, D. (2022). Molecular Factors and Mechanisms Driving Multidrug Resistance in Uropathogenic Escherichia coli—An Update. Genes. mdpi.com
Russo, T. A., Alvarado, C. L., Davies, C. J., Drayer, Z. J., Carlino-MacDonald, U., Hutson, A., ... & Lebreton, F. (2024). Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance. MBio, 15(2), e02867-23. asm.org
Santos, M., Mariz, M., Tiago, I., Martins, J., Alarico, S., & Ferreira, P. (2022). A review on urinary tract infections diagnostic methods: Laboratory-based and point-of-care approaches. Journal of Pharmaceutical and Biomedical Analysis, 219, 114889. sciencedirect.com
Sharma, B., Mohan, B., Sharma, R., Lakhanpal, V., Shankar, P., Singh, S. K., & Taneja, N. (2023). Evaluation of an automated rapid urine culture method for urinary tract infection: Comparison with gold standard conventional culture method. Indian Journal of Medical Microbiology, 42, 19-24. [HTML]