Modeling The Process of Chromatographic Separation of Melissa Essential Oil Components on a Capillary Column Using a Cross-Diffusion Model

  • Nayimova B.K. Samarkand State University named after Sharof Rashidov, Samarkand, Uzbekistan
  • Mukhamadiev A.N. Samarkand State University named after Sharof Rashidov, Samarkand, Uzbekistan
  • Mukhamadiev N.K. Samarkand State University named after Sharof Rashidov, Samarkand, Uzbekistan
Keywords: chromatographic separation, lemon balm essential oil, limonene, citral, geraniol, cross-diffusion, temperature programming, capillary column.

Abstract

This paper describes the modeling of the chromatographic separation of lemon balm essential oil components on a capillary column using temperature programming and a cross-diffusion model. The main attention is paid to the separation of the key components of the oil - limonene, citral and geraniol. The developed mathematical model, based on the convection-diffusion equations, takes into account the mutual influence of the components through cross-diffusion interactions. The modeling results showed a significant effect of cross-diffusion on the retention time and peak shape, especially for components with close boiling points. The use of temperature programming improved the separation of the components, and a decrease in the rate of temperature rise and an increase in the column length contributed to an increase in peak resolution. The results can be used to optimize the conditions for chromatographic analysis of complex multicomponent mixtures.

References

Jashin, J. A. I., & Jashin, A. J. A. (2006). Analiticheskaja hromatografija. Metody, apparatura, primenenie. Uspehi himii, 75(4), 366-379. https://www.uspkhim.ru/RCR3607pdf
Hacajuk, A. S., Pavlova, O. E., & Jehova, M. J. E. (2016). Rol' i znachenie vysokojeffektivnoj zhidkostnoj hromatografii v praktike vysokotehnologichnyh laboratornyh issledovanij. Zdorov'e. Medicinskaja jekologija. Nauka, (3(66)) 215-219. https://cyberleninka.ru/article/n/rol-i-znachenie-vysokoeffektivnoy-zhidkostnoy-hromatografii-v-praktike-vysokotehnologichnyh-laboratornyh-issledovaniy.pdf
Pashkovskij, P. S., Grekov, S. P., & Salahutdinov, T. G. (2014). Raschet kojefficientov diffuzii v ugljah s ispol'zovaniem hromatograficheskogo metoda. Gornospasatel'noe delo, (51), 78-87. http://nbuv.gov.ua/UJRN/gorsp_2014_51_12
Poppe, H. (2002). Mass transfer in rectangular chromatographic channels. Journal of Chromatography A, 948(1-2), 3-17. https://doi.org/10.1016/S0021-9673(01)01372-3
Susanto, A., Herrmann, T., von Lieres, E., & Hubbuch, J. (2007). Investigation of pore diffusion hindrance of monoclonal antibody in hydrophobic interaction chromatography using confocal laser scanning microscopy. Journal of Chromatography A, 1149(2), 178-188. https://doi.org/10.1016/j.chroma.2007.03.002
Schimpf, M. E., & Semenov, S. N. (2004). Symmetric diffusion equations, barodiffusion, and cross-diffusion in concentrated liquid mixtures. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 70(3), 031202. https://doi.org/10.1103/PhysRevE.70.031202
Comper, W. D., Williams, R. P. W., Checkley, G. J., & Preston, B. N. (1987). Stability analysis in diffusion-convection systems with and without cross diffusion. Journal of Physical Chemistry, 91(4), 993-1000. https://doi.org/10.1021/j100288a044
Rossi, F., Vanag, V. K., Tiezzi, E., & Epstein, I. R. (2010). Quaternary cross-diffusion in water-in-oil microemulsions loaded with a component of the Belousov–Zhabotinsky reaction. The Journal of Physical Chemistry B, 114(24), 8140-8146. https://doi.org/10.1021/jp102753b
Rossi, F., Vanag, V. K., & Epstein, I. R. (2011). Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the Belousov–Zhabotinsky reaction. Chemistry–A European Journal, 17(7), 2138-2145. https://doi.org/10.1002/chem.201002069
Dal’Toé, A. T., Padoin, N., Ropelato, K., & Soares, C. (2015). Cross diffusion effects in the interfacial mass and heat transfer of multicomponent droplets. International Journal of Heat and Mass Transfer, 85, 830-840. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.131
Peters, C., Thien, J., Wolff, L., Koß, H. J., & Bardow, A. (2019). Quaternary diffusion coefficients in liquids from microfluidics and Raman microspectroscopy: Cyclohexane + toluene + acetone + methanol. Journal of Chemical & Engineering Data, 65(3), 1273-1288. https://doi.org/10.1021/acs.jced.9b00632
Galdámez, J. R., & Danner, R. P. (2009). Multicomponent inverse gas chromatography: Determination of solubility and diffusivity in ternary polymer–solvent systems. Industrial & Engineering Chemistry Research, 48(10), 4966-4974. https://doi.org/10.1021/ie801776g
Ko, C. C., Chang, W. H., & Li, M. H. (2008). Ternary diffusion coefficients of monoethanolamine and N-methyldiethanolamine in aqueous solutions. Journal of the Chinese Institute of Chemical Engineers, 39(6), 645-651. https://doi.org/10.1016/j.jcice.2008.04.007
Mahmoodpour, S., Singh, M., Mahyapour, R., Omrani, S., & Sass, I. (2023). Numerical simulation of carbon dioxide–nitrogen mixture dissolution in water-saturated porous media: Considering cross-diffusion effects. Fluids, 8(1), 22. https://doi.org/10.3390/fluids8010022
Iwasaki, Y., Seyama, M., Matsuura, N., Inoue, S., Hayashi, K., & Koizumi, H. (2021). Direct measurement of near-wall molecular transport rate in a microchannel and its dependence on diffusivity. Langmuir, 37(29), 8687-8695. https://doi.org/10.1021/acs.langmuir.1c00561
Schabel, W., Scharfer, P., Kind, M., & Mamaliga, I. (2007). Sorption and diffusion measurements in ternary polymer–solvent–solvent systems by means of a magnetic suspension balance—Experimental methods and correlations with a modified Flory–Huggins and free-volume theory. Chemical Engineering Science, 62(8), 2254-2266. https://doi.org/10.1016/j.ces.2006.12.062
Vopička, O., Hynek, V., & Rabová, V. (2010). Measuring the transient diffusion of vapor mixtures through dense membranes. Journal of Membrane Science, 350(1-2), 217-225. https://doi.org/10.1016/j.memsci.2009.12.031
Muhamadiev, A. N., Khalilov, K. F., Nayimova, B. K., & Muhamadiev, N. Q. (2019). GC-MS investigation of composition of essential oils, extracted from Mentha piperita and Pelargonium roseum. SSRG International Journal of Applied Chemistry (SSRG-IJAC), 6(2), 31-34. https://doi.org/10.14445/23939133/IJAC-V6I2P105
Karabaev, H. E., Muhamadiev, N. K., Naimova, B. K., & Berdimurodova, F. P. (2022). Determination of microorganisms markers by the method GC-MS and efficacy evaluation of rhinosinusitis. Central Asian Journal of Medical and Natural Science, 3(4), 384-393. https://doi.org/10.17605/cajmns.v3i4.729
Nayimova, B. K., Mukhamadiev, A. N., & Mukhamadiev, N. K. (2024). GC-MS analysis of the chemical composition of hydrodistillate of the above-ground part of the plant Melissa officinalis L. Central Asian Journal of Medical and Natural Science, 5(4), 1025-1031. https://cajmns.centralasianstudies.org/index.php/CAJMNS/article/view/2654/2683
Published
2024-11-15
How to Cite
Nayimova B.K., Mukhamadiev A.N., & Mukhamadiev N.K. (2024). Modeling The Process of Chromatographic Separation of Melissa Essential Oil Components on a Capillary Column Using a Cross-Diffusion Model. Central Asian Journal of Medical and Natural Science, 5(4), 1119-1125. Retrieved from https://cajmns.centralasianstudies.org/index.php/CAJMNS/article/view/2669
Section
Articles