Antioxidants and Their Role in Mitigating Oxidative Stress: Mechanisms and Benefits

  • Shurooq Asaad Abdulameer Shaher Babylon Technical Institute, Al-Furat Al-Awsat Technical University, Najaf 54001,Iraq
  • Ali Moojid Fadheel Babylon Technical Institute, Al-Furat Al-Awsat Technical University, Najaf 54001,Iraq
  • Ali Kareem Hameed Babylon Technical Institute, Al-Furat Al-Awsat Technical University, Najaf 54001,Iraq
Keywords: Antioxidants, Oxidative Stress, Reactive Oxygen Species (ROS), Free Radicals, Cellular Protection, Therapeutic Applications

Abstract

Antioxidants play a crucial role in mitigating oxidative stress, a condition caused by an imbalance between reactive oxygen species (ROS) and the body's antioxidant defense systems. Oxidative stress is associated with various pathologies, including aging, cardiovascular diseases, cancer, and neurodegenerative disorders. Antioxidants, which can be either endogenous or exogenous, neutralize free radicals and reactive molecules by donating electrons, thus preventing cellular damage. Key antioxidants include enzymes like superoxide dismutase (SOD), catalase, and glutathione peroxidase, as well as non-enzymatic compounds like vitamin C, vitamin E, and flavonoids. The mechanisms by which antioxidants counteract oxidative damage involve direct scavenging of free radicals, upregulation of endogenous antioxidant defenses, and modulation of signaling pathways that influence cell survival and inflammation. Increasing evidence highlights the potential therapeutic benefits of antioxidants in managing oxidative stress-related diseases, but challenges remain in determining their efficacy in clinical settings. This review explores the biochemical mechanisms of antioxidants, their role in cellular protection, and their potential therapeutic applications in mitigating oxidative stress-related pathologies

References

Leyane, T. S., Jere, S. W., & Houreld, N. N. (2022). Oxidative stress in ageing and chronic degenerative pathologies: molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. International journal of molecular sciences, 23(13), 7273. mdpi.com
Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of toxicology, 97(10), 2499-2574. springer.com
Andrés, C. M. C., Pérez de la Lastra, J. M., Juan, C. A., Plou, F. J., & Pérez-Lebeña, E. (2022). Chemistry of hydrogen peroxide formation and elimination in mammalian cells, and its role in various pathologies. Stresses, 2(3), 256-274. mdpi.com
Nakai, K. & Tsuruta, D. (2021). What are reactive oxygen species, free radicals, and oxidative stress in skin diseases?. International journal of molecular sciences. mdpi.com
Costa, T. J., Barros, P. R., Arce, C., Santos, J. D., da Silva-Neto, J., Egea, G., ... & Jimenez-Altayo, F. (2021). The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radical Biology and Medicine, 162, 615-635. usp.br
Vissers, M. C. M. & Das, A. B. (2020). Ascorbate as an enzyme cofactor. Vitamin C. [HTML]
Miazek, K., Beton, K., Śliwińska, A., & Brożek-Płuska, B. (2022). The effect of β-carotene, tocopherols and ascorbic acid as anti-oxidant molecules on human and animal in vitro/in vivo studies: A review of research design and …. Biomolecules. mdpi.com
Gęgotek, A. & Skrzydlewska, E. (2023). Ascorbic acid as antioxidant. Vitamins and Hormones. [HTML]
Yin, X., Chen, K., Cheng, H., Chen, X., Feng, S., Song, Y., & Liang, L. (2022). Chemical stability of ascorbic acid integrated into commercial products: A review on bioactivity and delivery technology. Antioxidants, 11(1), 153. mdpi.com
Dzah, C. S., Zhang, H., Gobe, V., Asante-Donyinah, D., & Duan, Y. (2024). Anti-and pro-oxidant properties of polyphenols and their role in modulating glutathione synthesis, activity and cellular redox potential: Potential synergies for disease management. Advances in Redox Research, 100099. sciencedirect.com
Jordan, A. C., Perry, C. G. R., & Cheng, A. J. (2021). Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radical Biology and Medicine. [HTML]
Becker, A. L. & Indra, A. K. (2023). Oxidative stress in melanoma: beneficial antioxidant and pro-oxidant therapeutic strategies. Cancers. mdpi.com
Ahn, D., Kim, C. W., Go, R. E., & Choi, K. C. (2022). Evaluation of mitochondrial oxidative toxicity in mammalian cardiomyocytes by determining the highly reproducible and reliable increase in mitochondrial superoxides …. Toxicology in Vitro. sciencedirect.com
Ito, H., Kurokawa, H., & Matsui, H. (2021). Mitochondrial reactive oxygen species and heme, non-heme iron metabolism. Archives of Biochemistry and Biophysics. [HTML]
Anwar, S., Alrumaihi, F., Sarwar, T., Babiker, A. Y., Khan, A. A., Prabhu, S. V., & Rahmani, A. H. (2024). Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules, 14(6), 697. mdpi.com
Duszka, K. (2022). Versatile triad alliance: bile acid, taurine and microbiota. Cells. mdpi.com
Punzo, A., Silla, A., Fogacci, F., Perillo, M., Cicero, A. F., & Caliceti, C. (2024). Bile Acids and Bilirubin Role in Oxidative Stress and Inflammation in Cardiovascular Diseases. Diseases, 12(5), 103. mdpi.com
Ursini, F. & Maiorino, M. (2020). Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radical Biology and Medicine. [HTML]
Sarıkaya, E., & Doğan, S. (2020). Glutathione peroxidase in health and diseases. Glutathione system and oxidative stress in health and disease, 49. intechopen.com
Handy, D. E. & Loscalzo, J. (2022). The role of glutathione peroxidase-1 in health and disease. Free Radical Biology and Medicine. sciencedirect.com
Pei, J., Pan, X., Wei, G., & Hua, Y. (2023). Research progress of glutathione peroxidase family (GPX) in redoxidation. Frontiers in pharmacology. frontiersin.org
Zhitkovich, A. (2020). Nuclear and cytoplasmic functions of vitamin C. Chemical research in toxicology. acs.org
Marwicka, J. & Zięba, A. (2021). Antioxidants as a defence against reactive oxygen species. Aesthetic Cosmetol. Med. aestheticcosmetology.com
Atayik, M. C. & Çakatay, U. (2022). Melatonin-related signaling pathways and their regulatory effects in aging organisms. Biogerontology. researchgate.net
Juretić, N., Sepúlveda, R., D'Espessailles, A., Vera, D. B., Cadagan, C., De Miguel, M., ... & Tapia, G. (2021). Dietary alpha-and gamma-tocopherol (1: 5 ratio) supplementation attenuates adipose tissue expansion, hepatic steatosis, and expression of inflammatory markers in a high-fat-diet–fed murine model. Nutrition, 85, 111139. academia.edu
Meulmeester, F. L., Luo, J., Martens, L. G., Mills, K., van Heemst, D., & Noordam, R. (2022). Antioxidant supplementation in oxidative stress-related diseases: What have we learned from studies on alpha-tocopherol?. Antioxidants, 11(12), 2322. mdpi.com
Lalarukh, I. & Shahbaz, M. (2020). Response of antioxidants and lipid peroxidation to exogenous application of alpha-tocopherol in sunflower (Helianthus annuus L.) under salt stress. Pak. J. Bot. pakbs.org
Gronow, M. (2022). Studies on the Composition of The Low Molecular Weight Thiols Present in Tumour Cells–Is There An Elephant in The Room”? An Autobiographical Review. Cancer Science & Research. 2022a. researchgate.net
Tossounian, M. A., Zhao, Y., Yu, B. Y. K., Markey, S. A., Malanchuk, O., Zhu, Y., ... & Gout, I. (2024). Low-molecular-weight thiol transferases in redox regulation and antioxidant defence. Redox Biology, 103094. sciencedirect.com
Haddad, M., Hervé, V., Ben Khedher, M. R., Rabanel, J. M., & Ramassamy, C. (2021). Glutathione: an old and small molecule with great functions and new applications in the brain and in Alzheimer's disease. Antioxidants & Redox Signaling, 35(4), 270-292. [HTML]
Labarrere, C. A. & Kassab, G. S. (2022). Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Frontiers in Nutrition. frontiersin.org
Zeng, Y., Song, J., Zhang, M., Wang, H., Zhang, Y., & Suo, H. (2020). Comparison of in vitro and in vivo antioxidant activities of six flavonoids with similar structures. Antioxidants. mdpi.com
Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food chemistry. [HTML]
Bibi, N., Shah, M. H., Khan, N., Al-Hashimi, A., Elshikh, M. S., Iqbal, A., ... & Abbasi, A. M. (2022). Variations in total phenolic, total flavonoid contents, and free radicals’ scavenging potential of onion varieties planted under diverse environmental conditions. Plants, 11(7), 950. mdpi.com
Mehmood, A., Javid, S., Khan, M. F., Ahmad, K. S., & Mustafa, A. (2022). In vitro total phenolics, total flavonoids, antioxidant and antibacterial activities of selected medicinal plants using different solvent systems. BMC chemistry. springer.com
Zandi, P. & Schnug, E. (2022). Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biology. mdpi.com
Galasso, M., Gambino, S., Romanelli, M. G., Donadelli, M., & Scupoli, M. T. (2021). Browsing the oldest antioxidant enzyme: catalase and its multiple regulation in cancer. Free Radical Biology and Medicine, 172, 264-272. [HTML]
Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, 112891. academia.edu
Irato, P. & Santovito, G. (2021). Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants. mdpi.com
Sharma, S. K., Singh, D., Pandey, H., Jatav, R. B., Singh, V., & Pandey, D. (2022). An overview of roles of enzymatic and nonenzymatic antioxidants in plant. Antioxidant Defense in Plants: Molecular Basis of Regulation, 1-13. [HTML]
Gulcin, İ (2020). Antioxidants and antioxidant methods: An updated overview. Archives of toxicology. [HTML]
Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., & Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), 1984. mdpi.com
Flieger, J., Flieger, W., Baj, J., & Maciejewski, R. (2021). Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials. mdpi.com
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International journal of molecular sciences, 22(9), 4642. mdpi.com
Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., ... & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in chemistry, 11, 1158198. frontiersin.org
Sadiq, I. Z. (2023). Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Current Molecular Medicine. [HTML]
Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., ... & Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in physiology, 11, 694. frontiersin.org
Demirci-Cekic, S., Özkan, G., Avan, A. N., Uzunboy, S., Çapanoğlu, E., & Apak, R. (2022). Biomarkers of oxidative stress and antioxidant defense. Journal of pharmaceutical and biomedical analysis, 209, 114477. [HTML]
Jamshidi-Kia, F., Wibowo, J. P., Elachouri, M., Masumi, R., Salehifard-Jouneghani, A., Abolhassanzadeh, Z., & Lorigooini, Z. (2020). Battle between plants as antioxidants with free radicals in human body. Journal of Herbmed Pharmacology, 9(3), 191-199. rug.nl
Cadeddu Dessalvi, C., Deidda, M., Noto, A., Madeddu, C., Cugusi, L., Santoro, C., ... & Mercuro, G. (2021). Antioxidant approach as a cardioprotective strategy in chemotherapy-induced cardiotoxicity. Antioxidants & Redox Signaling, 34(7), 572-588. [HTML]
Andelova, K., Bacova, B. S., Sykora, M., Hlivak, P., Barancik, M., & Tribulova, N. (2022). Mechanisms underlying antiarrhythmic properties of cardioprotective agents impacting inflammation and oxidative stress. International Journal of Molecular Sciences, 23(3), 1416. mdpi.com
Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., Walode, S. G., & Rudrapal, M. (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26(13), 4021. mdpi.com
Nakamura, H. & Takada, K. (2021). Reactive oxygen species in cancer: Current findings and future directions. Cancer science. wiley.com
Sahoo, B. M., Banik, B. K., Borah, P., & Jain, A. (2022). Reactive oxygen species (ROS): key components in cancer therapies. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 22(2), 215-222. researchgate.net
George, S. & Abrahamse, H. (2020). Redox potential of antioxidants in cancer progression and prevention. Antioxidants. mdpi.com
Houldsworth, A. (2024). Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Communications. oup.com
Iakovou, E. & Kourti, M. (2022). … overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions. Frontiers in Aging Neuroscience. frontiersin.org
Egea, G., Jiménez-Altayó, F., & Campuzano, V. (2020). Reactive oxygen species and oxidative stress in the pathogenesis and progression of genetic diseases of the connective tissue. Antioxidants. mdpi.com
Cheng, X. M., Hu, Y. Y., Yang, T., Wu, N., & Wang, X. N. (2022). Reactive Oxygen Species and Oxidative Stress in Vascular‐Related Diseases. Oxidative Medicine and Cellular Longevity, 2022(1), 7906091. wiley.com
Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., ... & Devi, R. (2022). Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Frontiers in pharmacology, 13, 806470. frontiersin.org
Akbari, B., Baghaei‐Yazdi, N., Bahmaie, M., & Mahdavi Abhari, F. (2022). The role of plant‐derived natural antioxidants in reduction of oxidative stress. BioFactors, 48(3), 611-633. researchgate.net
Pap, N., Fidelis, M., Azevedo, L., do Carmo, M. A. V., Wang, D., Mocan, A., ... & Granato, D. (2021). Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Current Opinion in Food Science, 42, 167-186. sciencedirect.com
Gutiérrez-del-Río, I., López-Ibáñez, S., Magadán-Corpas, P., Fernández-Calleja, L., Pérez-Valero, Á., Tuñón-Granda, M., ... & Lombó, F. (2021). Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants, 10(8), 1264. mdpi.com
Zwolak, I. (2020). Protective Effects of Dietary Antioxidants against Vanadium‐Induced Toxicity: A Review. Oxidative Medicine and Cellular Longevity. wiley.com
Rani, J., Kaur, P., & Chuwa, C. (2023). Nutritional benefits of herbs and spices to the human beings. Annals of Phytomedicine An International Journal, 12(1), 187-197. researchgate.net
Chaudhari, R., Dhole, V., More, S., Kushwaha, S. T., & Takarkhede, S. (2021). Shealth Benefits of Herbs and Spices-review. World J. Pharm. Res, 10(3). amazonaws.com
Bieżanowska-Kopeć, R. & Piątkowska, E. (2022). Total polyphenols and antioxidant properties of selected fresh and dried herbs and spices. Applied Sciences. mdpi.com
Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48-78. mdpi.com
Engwa, G. A., Nweke, F. N., & Nkeh-Chungag, B. N. (2022). Free radicals, oxidative stress-related diseases and antioxidant supplementation. Alternative Therapies in Health & Medicine, 28(1). [HTML]
Jewell, D. E., Motsinger, L. A., & Paetau-Robinson, I. (2024). Effect of dietary antioxidants on free radical damage in dogs and cats. Journal of Animal Science, skae153. oup.com
Meineri, G., Martello, E., Radice, E., Bruni, N., Saettone, V., Atuahene, D., ... & Ribaldone, D. G. (2022). Chronic intestinal disorders in humans and pets: Current management and the potential of nutraceutical antioxidants as alternatives. Animals, 12(7), 812. mdpi.com
Fan, Z., Bian, Z., Huang, H., Liu, T., Ren, R., Chen, X., ... & Zhang, L. (2023). Dietary strategies for relieving stress in pet dogs and cats. Antioxidants, 12(3), 545. mdpi.com
Sun, Y., Lu, Y., Saredy, J., Wang, X., Drummer IV, C., Shao, Y., ... & Yang, X. (2020). ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox biology, 37, 101696. sciencedirect.com
Checa, J. & Aran, J. M. (2020). Reactive oxygen species: drivers of physiological and pathological processes. Journal of Inflammation research. tandfonline.com
Lennicke, C. & Cochemé, H. M. (2021). Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Molecular Cell. cell.com
Hameister, R., Kaur, C., Dheen, S. T., Lohmann, C. H., & Singh, G. (2020). Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(5), 2073-2087. [HTML]
Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in plant science, 11, 552969. frontiersin.org
Meitha, K., Pramesti, Y., & Suhandono, S. (2020). Reactive oxygen species and antioxidants in postharvest vegetables and fruits. International journal of food science, 2020(1), 8817778. wiley.com
Eassa, H. A., Eltokhy, M. A., Fayyaz, H. A., Khalifa, M. K., Shawky, S., Helal, N. A., ... & Nounou, M. I. (2020). Current topical strategies for skin-aging and inflammaging treatment: science versus fiction. Journal of Cosmetic Science, 71(5). [HTML]
Azevedo Martins, T. E., Sales de Oliveira Pinto, C. A., Costa de Oliveira, A., Robles Velasco, M. V., Gorriti Guitiérrez, A. R., Cosquillo Rafael, M. F., ... & Retuerto-Figueroa, M. G. (2020). Contribution of topical antioxidants to maintain healthy skin—A review. Scientia Pharmaceutica, 88(2), 27. mdpi.com
Ngoc, L. T. N., Moon, J. Y., & Lee, Y. C. (2023). Antioxidants for improved skin appearance: Intracellular mechanism, challenges and future strategies. International Journal of Cosmetic Science, 45(3), 299-314. [HTML]
Ferreyra, M. L. F., Serra, P., & Casati, P. (2021). Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. Physiologia plantarum. [HTML]
Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C., & Restani, P. (2021). Polyphenols and human health: The role of bioavailability. Nutrients, 13(1), 273. mdpi.com
Sahakyan, N., Bartoszek, A., Jacob, C., Petrosyan, M., & Trchounian, A. (2020). Bioavailability of tannins and other oligomeric polyphenols: A still to be studied phenomenon. Current Pharmacology Reports, 6, 131-136. [HTML]
Cianciosi, D., Forbes-Hernández, T. Y., Regolo, L., Alvarez-Suarez, J. M., Navarro-Hortal, M. D., Xiao, J., ... & Giampieri, F. (2022). The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chemistry, 375, 131904. uneatlantico.es
Luca, S. V., Macovei, I., Bujor, A., Miron, A., Skalicka-Woźniak, K., Aprotosoaie, A. C., & Trifan, A. (2020). Bioactivity of dietary polyphenols: The role of metabolites. Critical reviews in food science and nutrition, 60(4), 626-659. [HTML]
Jayaraj, P., Narasimhulu, C. A., Rajagopalan, S., Parthasarathy, S., & Desikan, R. (2020). Sesamol: A powerful functional food ingredient from sesame oil for cardioprotection. Food & function, 11(2), 1198-1210. [HTML]
Tirunavalli, S. K., Kuncha, M., Sistla, R., & Andugulapati, S. B. (2023). Targeting TGF-β/periostin signaling by sesamol ameliorates pulmonary fibrosis and improves lung function and survival. The Journal of Nutritional Biochemistry, 116, 109294. [HTML]
Jayaraj, P., Sarkar, P., Routh, S., Sarathe, C., Desikan, R., & Thirumurugan, K. (2022). A promising discovery of an anti-aging chemical conjugate derived from lipoic acid and sesamol established in Drosophila melanogaster. New Journal of Chemistry, 46(23), 11229-11241. [HTML]
Zahra, K. F., Lefter, R., Ali, A., Abdellah, E. C., Trus, C., Ciobica, A., & Timofte, D. (2021). The involvement of the oxidative stress status in cancer pathology: a double view on the role of the antioxidants. Oxidative Medicine and Cellular Longevity, 2021(1), 9965916. wiley.com
Hayes, J. D., Dinkova-Kostova, A. T., & Tew, K. D. (2020). Oxidative stress in cancer. Cancer cell. cell.com
Hu, Y., Cheng, L., Du, S., Wang, K., & Liu, S. (2023). Antioxidant curcumin induces oxidative stress to kill tumor cells. Oncology Letters, 27(2), 67. spandidos-publications.com
Published
2024-11-25
How to Cite
Shurooq Asaad Abdulameer Shaher, Ali Moojid Fadheel, & Ali Kareem Hameed. (2024). Antioxidants and Their Role in Mitigating Oxidative Stress: Mechanisms and Benefits. Central Asian Journal of Medical and Natural Science, 6(1), 34-53. Retrieved from https://cajmns.centralasianstudies.org/index.php/CAJMNS/article/view/2668
Section
Articles