Emergence of an Aggressive Strain of Dermatophyte Resistant to Conventional Treatments

  • Nahrawaan M. Wali Department Medical Pharmacognosy, College of Pharmacy, University of Thi-Qar, Thi-Qar, 64001, Iraq
  • Teeba T. Khudair Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi- Thi-Qar, Qar, 64001, Iraq
  • Amena Lafeta Muttlaq AI- Shareefi Department of pharmacy and Toxicology, College of Pharmacy, University of Thi-Qar, Thi-Qar, 64001, Iraq
Keywords: Fungi, Antifungals, Filamentous fungi, Tinea

Abstract

This study investigates the prevalence and etiology of fungal infections, emphasizing traditional diagnostic methods. A total of 154 samples from skin (75.32%), hair (15.85%), and nails (9%) were analyzed, with a consultant dermatologist’s participation at the Turkish Hospital in Nasiriya between February and November 2023. Direct examination using KOH solution revealed a high infection prevalence, with 79% positive results. Females showed a higher infection rate (43.5%) than males (27.92%), and the 11-20 age group exhibited the highest incidence, primarily with ringworm infections. The study identified Trichophyton (54.66%) as the most prevalent genus, followed by T. mentagrophytes (37.33%) and other dermatophytes. Among the five antifungal agents tested—miconazole, ketoconazole, nystatin, fluconazole, and co-trimoxazole—miconazole and nystatin showed the highest inhibition values, whereas co-trimoxazole showed significant resistance. Fungal virulence was also examined through enzyme production (protease, lipase, and keratinase), indicating active infection potential. This study highlights the critical need for effective antifungal treatments and provides insight into the diagnostic and therapeutic challenges of fungal infections in this region.

References

[1] I. Weitzman and R. C. Summerbell, "The Dermatophytes," Clin. Microbiol. Rev., vol. 8, pp. 240–259, 1995.
[2] Y. Gräser, M. Monod, J. P. Bouchara, K. Dukik, P. Nenoff, A. Kargl, C. Kupsch, P. Zhan, A. Packeu, V. Chaturvedi, and S. de Hoog, "New Insights in Dermatophyte Research," Med. Mycol., vol. 56, suppl. 1, pp. S2–S9, Apr. 2018.
[3] G. S. de Hoog, K. Dukik, M. Monod, A. Packeu, D. Stubbe, M. Hendrickx, C. Kupsch, J. B. Stielow, J. Freeke, M. Göker, and A. Rezaei-Matehkolaei, "Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes," Mycopathologia, vol. 182, pp. 5–31, Feb. 2017.
[4] H. Degreef, "Clinical Forms of Dermatophytosis (Ringworm Infection)," Mycopathologia, vol. 166, pp. 257–265, Nov. 2008.
[5] R. Chermette, L. Ferreiro, and J. Guillot, "Dermatophytoses in Animals," Mycopathologia, vol. 166, pp. 385–405, Nov. 2008.
[6] A. K. Gupta and E. A. Cooper, "Update in Antifungal Therapy of Dermatophytosis," Mycopathologia, vol. 166, pp. 353–367, Nov. 2008.
[7] A. B. Petersen, M. H. Rønnest, T. O. Larsen, and M. H. Clausen, "The Chemistry of Griseofulvin," Chem. Rev., vol. 114, no. 24, pp. 12088–12107, Dec. 2014.
[8] Y. Nivoix, M. P. Ledoux, and R. Herbrecht, "Antifungal Therapy: New and Evolving Therapies," Semin. Respir. Crit. Care Med., vol. 41, no. 1, pp. 158–174, Feb. 2020.
[9] S. W. Mueller, S. K. Kedzior, M. A. Miller, P. M. Reynolds, T. H. Kiser, M. Krsak, and K. C. Molina, "An Overview of Current and Emerging Antifungal Pharmacotherapy for Invasive Fungal Infections," Expert Opin. Pharmacother., vol. 22, no. 10, pp. 1355–1371, Jul. 2021.
[10] A. I. Lopes, F. K. Tavaria, and M. E. Pintado, "Conventional and Natural Compounds for the Treatment of Dermatophytosis," Med. Mycol., vol. 58, no. 6, pp. 707–720, Aug. 2020.
[11] A. K. Gupta, K. A. Foley, and S. G. Versteeg, "New Antifungal Agents and New Formulations Against Dermatophytes," Mycopathologia, vol. 182, no. 1, pp. 127–141, Feb. 2017.
[12] D. M. Saunte, R. K. Hare, K. M. Jørgensen, R. Jørgensen, M. Deleuran, C. O. Zachariae, S. F. Thomsen, L. Bjørnskov-Halkier, K. Kofoed, and M. C. Arendrup, "Emerging Terbinafine Resistance in Trichophyton: Clinical Characteristics, Squalene Epoxidase Gene Mutations, and a Reliable EUCAST Method for Detection," Antimicrob. Agents Chemother., vol. 63, no. 10, pp. 10–128, Oct. 2019.
[13] K. Sardana, R. Kaur, P. Arora, R. Goyal, and S. Ghunawat, "Is Antifungal Resistance a Cause for Treatment Failure in Dermatophytosis: A Study Focused on Tinea Corporis and Cruris from a Tertiary Centre?," Indian Dermatol. Online J., vol. 9, no. 2, pp. 90–95, Mar. 2018.
[14] P. Nenoff, S. B. Verma, S. Uhrlaß, A. Burmester, and Y. Gräser, "A Clarion Call for Preventing Taxonomical Errors of Dermatophytes Using the Example of the Novel Trichophyton mentagrophytes Genotype VIII Uniformly Isolated in the Indian Epidemic of Superficial Dermatophytosis," Mycoses, vol. 62, no. 1, pp. 6–10, 2019.
[15] A. Ebert, M. Monod, K. Salamin, A. Burmester, S. Uhrlaß, C. Wiegand, et al., "Alarming India-Wide Phenomenon of Antifungal Resistance in Dermatophytes: A Multicentre Study," Mycoses, vol. 63, no. 7, pp. 717–728, 2020.
[16] H. A. Alhamdani and W. A. Ali, "Diagnostic, Survey Study of Fungi Isolated From Tinea Capitis in Baghdad City," Nat. Volatiles Essent. Oils J., vol. 12920–31, Dec. 2021.
[17] S. M. Rudramurthy, S. A. Shankarnarayan, S. Dogra, D. Shaw, K. Mushtaq, R. A. Paul, T. Narang, and A. Chakrabarti, "Mutation in the Squalene Epoxidase Gene of Trichophyton interdigitale and Trichophyton rubrum Associated With Allylamine Resistance," Antimicrob. Agents Chemother., vol. 62, no. 5, pp. 10–128, May 2018.
[18] Y.-H. Ou, R.-K. Du, S.-P. Zhang, Y. Ling, S. Li, C.-J. Zhao, et al., "Synthesis, Crystal Structure and In Vitro Antifungal Activity of Two-Dimensional Silver (I)-Voriconazole Coordination Complexes," J. Mol. Struct., vol. 1215, p. 128229, 2020.
[19] S. Decelis, D. Sardella, T. Triganza, J.-P. Brincat, J. P. Gatt, and V. P. Valdramidis, "Assessing the Anti-Fungal Efficiency of Filters Coated with Zinc Oxide Nanoparticles," R. Soc. Open Sci., vol. 4, no. 5, p. 161032, 2017.
[20] A. M. Elgorban, A. E.-R. M. El-Samawaty, M. A. Yassin, S. R. Sayed, S. F. Adil, K. M. Elhindi, et al., "Antifungal Silver Nanoparticles: Synthesis, Characterization and Biological Evaluation," Biotechnol. Biotechnol. Equip., vol. 30, no. 1, pp. 56–62, 2016.
[21] A. Rasool, K. M. Bhat, A. A. Sheikh, A. Jan, and S. Hassan, "Medicinal Plants: Role, Distribution and Future," J. Pharmacogn. Phytochem., vol. 9, no. 2, pp. 2111–2114, 2020.
[22] A. El-Said, "Studies on Fungi Isolated From Dermatomycoses Patients in Egypt," Mycobiology, vol. 30, no. 3, pp. 154–159, 2002.
[23] E. M. El-Diasty, M. Ahmed, N. Okasha, S. F. Mansour, S. I. El-Dek, and H. El-Khalek, "Antifungal Activity of Zinc Oxide Nanoparticles Against Dermatophytic Lesions of Cattle," Rom. J. Biophys., vol. 23, no. 3, pp. 191–202, 2013.
[24] F. S. Silva, M. F. Landell, G. V. B. Paulino, H. D. M. Coutinho, and U. P. Albuquerque, "Antifungal Activity of Selected Plant Extracts Based on an Ethnodirected Study," Acta Bot. Bras., vol. 34, pp. 442–448, 2020.
[25] P. Sitarek, T. Kowalczyk, J. Wieczfinska, A. Merecz-Sadowska, K. Górski, T. Śliwiński, et al., "Plant Extracts as a Natural Source of Bioactive Compounds and Potential Remedy for the Treatment of Certain Skin Diseases," Curr. Pharm. Des., vol. 26, no. 24, pp. 2859–2875, 2020.
[26] L. García-Madrid, M. Huizar-López, L. Flores-Romo, and A. Islas-Rodríguez, "Trichophyton rubrum Manipulates the Innate Immune Functions of Human Keratinocytes," Open Life Sci., vol. 6, no. 6, pp. 902–910, 2011.
Published
2024-11-01
How to Cite
Wali, N. M., Khudair, T. T., & AI- Shareefi, A. L. M. (2024). Emergence of an Aggressive Strain of Dermatophyte Resistant to Conventional Treatments. Central Asian Journal of Medical and Natural Science, 5(4), 1100-1111. Retrieved from https://cajmns.centralasianstudies.org/index.php/CAJMNS/article/view/2662
Section
Articles