Synthesis, Characterization, Anticancer Activity Study of Novel Curcumin Analogues Against A549 Lung Cancer Cell Line
Abstract
A series of new curcumin analogues were synthesized using the ultrasonic irradiation method, which involved the condensation reaction of 3-ethyl-2,4-pentandione and substituted aromatic aldehydes in the presence of boric oxide, trimethylborate, and butylamine. The synthesized compounds were identified using electron impact mass spectrometry (EI), 1HNMR,13CNMR and FTIR spectroscopy, which confirmed the proposed structure of the synthesized compounds. The in vitro anticancer activity study of synthesized compounds against the A549 lung cancer cell line was examined employing the microculture tetrazolium (MTT) assay. The results showed that compound 1 (IC50 10.8 µg/ml, SI of 17.56) has the most potent cytotoxic activity and high selectivity compared to curcumin (IC50 94.4 µg/ml, SI of 3.20). On the other hand, compound 7 (IC50 88.5 µg/ml, SI of 1.15) exhibits more anticancer activity against A549 lung cancer but has less selectivity than curcumin.
References
Chanda S, Ramachandra T. Phytochemical and pharmacological importance of turmeric (Curcuma longa): A review. RRJoP (2019) 16-23. 2019;9(1):16-23
Banuppriya G, Sribalan R, Padmini V, Shanmugaiah V. Biological evaluation and molecular docking studies of new curcuminoid derivatives: Synthesis and characterization. Bioorg Med Chem Lett. 2016;26(7):1655-9. doi: http://dx.doi.org/10.1016/j.bmcl.2016.02.066
Narayanan VS, Muddaiah S, Shashidara R, Sudheendra US, Deepthi NC, Samaranayake L. Variable antifungal activity of curcumin against planktonic and biofilm phase of different candida species. Indian J Dent Res. 2020;31(1):145-8. doi:https://10.4103/ijdr.IJDR_521_17
Kohli K, Ali J, Ansari M, Raheman Z. Curcumin: a natural antiinflammatory agent. Indian J Pharmacol. 2005;37(3):141. doi:https://doi.org/10.4103/0253-7613.16209
Sribalan R, Kirubavathi M, Banuppriya G, Padmini V. Synthesis and biological evaluation of new symmetric curcumin derivatives. Bioorg Med Chem Lett. 2015;25(19):4282-6. doi:https://doi.org/10.1016/j.bmcl.2015.07.088
Mehta HJ, Patel V, Sadikot RT. Curcumin and lung cancer--a review. Target Oncol. 2014;9(4):295-310. doi:https://doi.org/10.1007/s11523-014-0321-1
Muhammad S, Saba A, Khera RA, Al-Sehemi AG, Algarni H, Iqbal J, et al. Virtual screening of potential inhibitor against breast cancer-causing estrogen receptor alpha (ERα): molecular docking and dynamic simulations. Mol Simul 2022;48(13):1163-74. doi:https://doi.org/10.1080/08927022.2022.2072840
Wu J, Cai Z, Wei X, Chen M, Ying S, Shi L, et al. Anti-Lung Cancer Activity of the Curcumin Analog JZ534 In Vitro. Biomed Res Int. 2015;2015:504529. doi:https://doi.org/10.1155/2015/504529
Reck M, Heigener DF, Mok T, Soria JC, Rabe KF. Management of non-small-cell lung cancer: recent developments. Lancet. 2013;382(9893):709-19. doi:https://doi.org/10.1016/S0140-6736(13)61502-0
Sinha D, Biswas J, Sung B, Aggarwal BB, Bishayee A. Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr Drug Targets. 2012;13(14):1799-819. doi:https://doi.org/10.2174/138945012804545632
Cortney CH, Krishnan VV. Keto–Enol Tautomerization of Acetylacetone in Mixed Solvents by NMR Spectroscopy. A Physical Chemistry Experiment on the Application of the Onsager-Kirkwood Model for Solvation Thermodynamics. J Chem Educ. 2020;97(3):825-30. doi:https://doi.org/10.1021/acs.jchemed.9b00737
Fuchs JR, Pandit B, Bhasin D, Etter JP, Regan N, Abdelhamid D, et al. Structure-activity relationship studies of curcumin analogues. Bioorg Med Chem Lett. 2009;19(7):2065-9. doi:https://doi.org/10.1016/j.bmcl.2009.01.104
BOYRAZ MÜ, SHEKHANY B, SÜZERGÖZ F. Cellular Imaging Analysis of MTT Assay Based on Tetrazolium Reduction. Harran Üniversitesi Tıp Fakültesi Dergisi. 2021;18(1):95-9. doi:https://doi.org/10.35440/hutfd.816390
Lei YJ, Bi Y, Jie OY. Synthesis of some curcumin analogues under ultrasound irradiation. AMR. 2011;332:1623-6. doi:https://doi.org/10.4028/www.scientific.net/amr.332-334.1623.
Al-Wabli RI. Synthesis of Curcumin Analogues Biconjugates as Potential Antitumor Agents in Isolated Human Cells. King Saud University, Saudi Arabia. 2006
Tsukahara T, Nagaoka K, Morikawa K, Mawatari K, Kitamori T. Keto-Enol Tautomeric Equilibrium of Acetylacetone Solution Confined in Extended Nanospaces. J Phys Chem B. 2015;119(46):14750-5. doi:https://doi.org/10.1021/acs.jpcb.5b08020
Payton F, Sandusky P, Alworth WL. NMR study of the solution structure of curcumin. J Nat Prod. 2007;70(2):143-6. doi:https://doi.org/10.1021/np060263s
Pedersen U, Rasmussen PB, Lawesson SO. Synthesis of Naturally Occurring Curcuminoids and Related Compounds. Liebigs Annalen der Chemie. 2006;1985(8):1557-69. doi:https://doi.org/10.1002/jlac.198519850805
Vennila P, Govindaraju M, Venkatesh G, Kamal C. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations. J Mol Struct. 2016;1111:151-6. doi:https://doi.org/10.1016/j.molstruc.2016.01.068
Faisal AG, Hassan QMA, Alsalim TA, Sultan HA, Kamounah FS, Emshary CA. Synthesis, optical nonlinear properties, and all‐optical switching of curcumin analogues. J Phys Org Chem. 2022;35(10):e4401. doi:https://doi.org/10.1002/poc.4401
Alsalim T, Saeed B, Elias R, Titinchi S. Synthesis and electronic properties of alkyl- and alkyloxy-curcuminoids. European J Chemistry. 2013;4:70-3. doi:https://doi.org/10.5155/eurjchem.4.1.70-73.728
Kolev TM, Velcheva EA, Stamboliyska BA, Spiteller M. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int J Quantum Chem. 2005;102(6):1069-79. doi:https://doi.org/10.1002/qua.20469
Bich VT, Thuy NT, Binh NT, Huong NTM, Yen PND, Luong TT. Structural and spectral properties of curcumin and metal-curcumin complex derived from turmeric (Curcuma longa). Physics and engineering of new materials: Springer; 2009. p. 271-8. doi:https://doi.org/10.1007/978-3-540-88201-5_31
Tayyari S, Zeegers-Huyskens T, Wood J. Spectroscopic study of hydrogen bonding in the enol form of β-diketones—I. Vibrational assignment and strength of the bond. Spectrochimica Acta A. 1979;35(11):1265-76. doi:https://doi.org/10.1016/0584-8539(79)80208-1
Chiavassa T, Verlaque P, Pizzala L, Roubin P. Vibrational studies of methyl derivatives of malonaldehyde: determination of a reliable force field for β-dicarbonyl compounds. Spectrochimica Acta Part A: Molecular Spectroscopy. 1994;50(2):343-51. doi:https://doi.org/10.1016/0584-8539(94)80063-4
McCauley J, Zivanovic A, Skropeta D. Bioassays for anticancer activities. Methods Mol Biol. 2013;1055:191-205. doi:https://doi.org/10.1007/978-1-62703-577-4_14
Wahyuningsih TD, Suma AAT, Astuti E. Synthesis, anticancer activity, and docking study of N-acetyl pyrazolines from veratraldehyde. J Appl Pharm Sci. 2019;9(3):014-20. doi:https://doi.org/10.7324/JAPS.2019.90303