The Synergistic Effect of Cordia Myxa and Bioemulsifier Extracted from Saccharomyces Cerevisiae Against Pathogenic Bacteria
Abstract
Twenty-five pathogenic bacterial isolates were obtained from different isolation sources. Most of the isolates showed resistance to most antibiotics. Five isolates of baker's yeast of different origins were collected from local markets. Isolate Pa was selected as the most efficient isolate in producing the bioemulsifier, with an emulsifying efficiency of E24 = 81.8%. The method of applying the microtiter plate was adopted to test the inhibitory activity. The bioemulsion showed inhibitory activity against six selected isolates at MIC=80.82mg/ml. Both extracts from C. myxa contain phenols, flavonoids, and glycosides, while the water extract without the alcoholic extract lacks alkaloids and a small percentage of saponin. The water extract showed inhibitory activity against S. Typhi, Shigella sonnei, P. aeruginosa, S. aureus, and K. pneumoniae at (MIC) = 250mg/ml, And at MIC=62.5mg/ml towards E. coli. The alcoholic extract showed inhibitory activity against S. Typhi, Shigella sonnei, K. pneumoniae, and E. coli isolates at MIC=62.5mg/ml, While it showed inhibitory activity against P. aeruginosa and S. aureus isolates at MIC=125mg/ml. The Boardchequer method was adopted to study the synergistic relationship and determine the FIC. The study showed a synergistic relationship between the bioemulsifier and the alcoholic extract with a fractional inhibitory concentration (FIC) = 0.267 towards isolates of S. typhi, Shigella sonnei, K. pneumonia, and E. coli, While the FIC = 0.151 towards P. aeruginosa and S. aureus isolates.
References
2. Alcantara, V. A.; Pajares, I. G.; Simbahan, J. F.; and Edding, S. N. (2014). Downstream recovery and purification of a bioemulsifier from Sacchromyces cerevisiae 2031. Phil. Agric. Sci, 96: 349-359.
3. Alizadeh-Sani, M.; Hamishehkar, H.; Khezerlou, A. ; Azizi-Lalabadi,M. ; Azadi.Y; Nattagh-Eshtivani,E; Fasihi,M; Ghavami,A; Aynehchi,A and Ehsani, A. (2018). Bioemulsifiers derived from microorganisms: applications in the drug and food industry. Pharm. Bull., 8(2): 191-199. http://dx.doi.org/10.15171/apb.2018.023
4. Al-Khafaji, S. A. ., Alsaadawi, M. A. ., Al-Yasari, A. M. ., & Al-Saadawe, M. A. . (2021). Article Review: Cordia myxa L.: The Gift of the Nature, A Review. Basrah Journal of Agricultural Sciences, 34(2), 267–277. http://dx.doi.org/10.37077/25200860.2021.34.2.20
5. Al-Maliki, A. D., Aboud, M. N., & Hameed, M. F. (2021, November). Estimation and evaluation of medicinal efficacy of maximum inhibitory concentration of alkaloids extracted from Iraqi Cordia myxa leaves against some pathogenic bacteria. In Journal of Physics: Conference Series (Vol. 2063, No. 1, p. 012020). IOP Publishing.http://dx.doi.org/10.1088/1742-6596/2063/1/012020
6. Al-Musawi, M. H., Ibrahim, K. M., & Albukhaty, S. (2022). In vitro study of antioxidant, antibacterial, and cytotoxicity properties of Cordia myxa fruit extract. Iranian Journal of Microbiology, 14(1), 97.http://dx.doi.org/10.18502/ijm.v14i1.8810
7. Amal, A., Alyamani., Mastafa, H., J., Al-Musawi., Salim, Albukhaty., Ghassan, M., Sulaiman., Kadhim, M., Ibrahim., Elsadig, M., Ahmed., Majid, S., Jabir., Hassan, Al-Karagoly., Abed, Al, Salam, Aljahmany., Mustafa, K., A., Mohammed. (2023). Electrospun polycaprolactone/chitosan nanofibers containing Cordia myxa fruit extract as potential biocompatible antibacterial wound dressings. molecules, 28(6):2501-2501. http://dx.doi.org/10.3390/molecules28062501
8. Aziz, R. A. (2023). Study of the synergistic eefect of protein produced from Saccharomyces cerevisiae with lactoferrin against multiresistans diarrheal bacteria:. Iraqi Journal of Market Research and Consumer Protection, 15(1), 45-53. http://dx.doi.org/10.28936/jmracpc15.1.2023.(4)
9. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
10. CLSI: Clinical Laboratory Standards Institute. (2023). Performance Standards for Antimicrobial Disk Susceptibility Test.
11. Dubois, N.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A. and Smith, F. (1956). Colorimetric method for detection of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
12. Elshikh,.M.; Ahmed, S. ; Funston,S. ; Dunlop, P.; McGaw, M. ; Marchant, R. ; and Banat, I.M. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactant. Biotechnol Lett, 38:1015–1019. https://link.springer.com/article/10.1007/s10529-016-2079-2
13. H. GH. Rasheed and N. H. Haydar (2023) “PurifIcation, characterization and evaluation of biological activity of mannoprotein produced from Saccharomyces cerevisiae by, iraqi journal of agricultural sciences, 54(2), pp. 347–359. http://dx.doi.org/10.36103/ijas.v54i2.1709
14. Jasiem, T. M., Al-mugdadi, S. F. H., Aljubory, I. S., & Latef, Q. N. (2016). Phytochemical study and antibacterial activity of crude alkaloids and mucilage of Cordia myxa in Iraq. International Journal of Pharmaceutical Sciences Review and Research, 39(1), 232-236. https://iopscience.iop.org/article/10.1088/1742-6596/2063/1/012020/meta#:~:text=10.1088/1742%2D6596/2063/1/012020
15. Kadhem, B.Q; Essa, R.H. and Mahmood, N.N. (2019). Antimicrobial activity of a bioemulsifiеr produced by Saccharomyces cerevisiae. J. Univ. Garmian,6 (1):546- 554. https://dorl.net/dor/20.1001.1.23100087.2019.6.1.36.0
16. Kancherla, N., Dhakshinamoothi, A., Chitra, K., & Komaram, R. B. (2019). Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (in vitro). Maedica, 14(4), 350. http://dx.doi.org/10.26574/maedica.2019.14.4.350
17. Larki, A., Nader, S. M., Zarei Ahmady, A., Mohtasham, N., Mafakher, L., Khelghati, N., & Hedayati, E. (2020). Comparing different extraction methods for oral syrup formulation of major bioactive compounds from Cordia Myxa fruit. Eurasian Chemical Communication, 2, 953-960. http://dx.doi.org/10.22034/ecc.2020.113247
18. Li, J., and Karboune, S. (2019). Characterization of the composition and the techno-functional properties of mannoproteins from Saccharomyces cerevisiae yeast cell walls. Food Chem., 297, 124867. http://dx.doi.org/10.1016/j.foodchem.2019.05.141
19. Mahon, C.R.and Lehman, D.C. (2019). Textbook Of Diagnostic Microbiology. 6th ed .Elsevier Inc.
20. Mnif, I., and Ghribi, D. (2015). High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications. World J. Microbiol. Biotechnol., 31(5): 691-706. http://dx.doi.org/10.1007/s11274-015-1830-5
21. Murad, A. M. H., & Karbon, M. H. (2020). Phytochemical screening and in vivo hepatoprotective activity of the Cordia myxa L fruit extracts against paracetamol-induced hepatotoxicity in rats. Syst Rev Pharm, 11, 1783-1794. http://dx.doi.org/10.31838/srp.2020.11.249
22. Murad, Ahmed Mohammed Hassan.(2021). Study of Cordia myxa L. fruit extracts: Biochemical Properties, antibacterial activity and their role as hepatoprotective agents. Master's thesis. College of Basic Education. AL-Mustansiriyah University.
23. Naser, H. M.(2015). Production, purification and characterization of biosurfactant from Geobacillus thermoleovorans and studying its antimicrobial and antitumor activity. Dissertation. College of Science - Al-Nahrain University.
24. Raham, Duaa Haider.(2017). Inhibition of Acinetobacter baumannii by Purified Biosurfactant from Saccharomyces cerevisiae. Master's thesis, College of Science, Al-Mustansiriya University.
25. Renata, Urban-Chmiel., Agnieszka, Marek., Dagmara, Stępień-Pyśniak., Kinga, Wieczorek., Marta, Dec., Anna, Nowaczek., Jacek, Osek. (2022). Antibiotic Resistance in Bacteria—A Review. Antibiotics. http://dx.doi.org/10.3390/antibiotics11081079
26. Saleh, A. Y., Salman, J. A. S., & Aziz, R. A. (2020). Study of the effect of mannoprotein extracted from Saccharomyces cerevisiae on some pathogenic bacteria. EurAsian Journal of BioSciences, 14(2), 7297-7300. http://dx.doi.org/10.6084/m9.figshare.23289743.v1
27. Saleh, Ali Yahya Abboud.(2021). Effect of mannoprotein extracted from Saccharomyces cerevisiae yeast to some pathogenic bacteria. Master's thesis, College of Science, Al-Mustansiriya University.
28. Yagul, Pedraza-Pérez., L.E., García-Díaz., Ricardo, Carreño-Lopez., Luis, Ernesto, Fuentes-Ramírez., Rosa, del, Carmen, Rocha-Gracia., Vianey, Marín-Cevada. (2023). Resistance to Antibiotics by Enteric Bacteria Associated with the Swine Industry: in silico Exploration of the Distribution of Resistance Genes. Acta Veterinaria-beograd, 73(2):249-261. http://dx.doi.org/10.2478/acve-2023-0019
29. Yan, Qiao., Chengyao, Xia., Lin, Liu., Lei-Gui, Tang., Jihong, Wang., Changsheng, Xu., Juying, Wang., Lei, Zhang., Xianfeng, Ye., Yan, Huang., Dongmei, Mao., Yong, Heng, Liang., Li, Zhoukun., Zhongli, Cui. (2022). Structural characterization and emulsifier property of yeast mannoprotein enzymatically prepared with a β-1,6- glucanase. Lebensmittel-Wissenschaft & Technologie, 168:113898-113898. http://dx.doi.org/10.1016/j.lwt.2022.113898

This work is licensed under a Creative Commons Attribution 4.0 International License.