Study of the Kinetics and Thermodynamic Parameters of Schiff Bases Derived from 4-Aminoantipyrin
Abstract
The kinetic and thermodynamic properties of six well-known Schiff bases (A1, A3, A5, A6,
A8, A12) derived from 4-aminoantipyrine and six different aromatic aldehydes were studied. The
substituent on aldehydic ring of the compounds ranged from electron-withdrawing to electrondonating substituents, in addition to benzaldehyde itself. The hydrolysis kinetics of the Schiff bases
revealed minimal disparity in their rate constant values. Faster rate of hydrolysis was observed in
the case of (A5) comparing with the remaining compounds. The effect of an acidic pH on the
hydrolysis process is in line with earlier research and studies, indicating that conducting the reaction
in acidic or basic environments, as opposed to a neutral environment, speeds up the process. An
investigation into the effect of temperature on the hydrolysis of the examined compounds revealed
that the activation energy values for all compounds were quite low. This indicates that the reaction
occursreadily and rapidly. The ΔG values indicated that the hydrolysis processes of the compounds
under investigation did not proceed spontaneously, but were instead facilitated by the presence of a
catalyst, specifically hydrogen and hydroxyl ions. The investigation verified the significance of the
thermodynamic variables (∆H and ∆S) in regulating reaction rates. Additionally, the calculated
negative entropy value suggests a probable formation of the activated active complex.
References
Sinn, E., & Harris, C. M. (1969). Schiff base metal complexes as ligands1. Coordination Chemistry Reviews, 4(4), 391-422.
Yass, I. A., Aftan, M. M., Dalaf, A. H., & Jumaa, F. H. (Nov. 2020). Synthesis and Identification of New Derivatives of Bis-1,3-Oxazepene and 1,3-Diazepine and Assess the Biological and Laser Efficacy for Them. The Second International & The Fourth Scientific Conference of College of Science – Tikrit University. (P4): 77-87.
Salih, B. D., Dalaf, A. H., Alheety, M. A., Rashed, W. M., & Abdullah, I. Q. (2021). Biological activity and laser efficacy of new Co (II), Ni (II), Cu (II), Mn (II) and Zn (II) complexes with phthalic anhydride. Materials Today: Proceedings, 43, 869-874.
Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., & Madaj, J. (2022). Different Schiff bases—structure, importance and classification. Molecules, 27(3), 787.
Khalaf, S. D., Ahmed, N. A. A. S., & Dalaf, A. H. (2021). Synthesis, characterization and biological evaluation (antifungal and antibacterial) of new derivatives of indole, benzotriazole and thioacetyl chloride. Materials Today: Proceedings. 47(17), 6201-6210.
Dalaf, A. H., Jumaa, F. H., & Salih, H. K. (2021). Preparation, Characterization, Biological Evaluation and Assess Laser Efficacy for New Derivatives of Imidazolidin-4-one. International Research Journal of Multidisciplinary Technovation, 3(4), 41-51.
Dalaf, A. H., Jumaa, F. H., & Salih, H. K. (2021). MULTIDISCIPLINARY TECHNOVATION. Red, 15(A2), C44H36N10O8.
Dalaf, A. H., Jumaa, F. H., Aftana, M. M., Salih, H. K., & Abd, I. Q. (2022). Synthesis, Characterization, Biological Evaluation, and Assessment Laser Efficacy for New Derivatives of Tetrazole. In Key Engineering Materials (Vol. 911, pp. 33-39). Trans Tech Publications Ltd.
Dalaf, A. H., Jumaa, F. H., & Yass, I. A. (2022, November). Synthesis, characterization, biological evaluation, molecular docking, assess laser efficacy, thermal performance and optical stability study for new derivatives of bis-1, 3-oxazepene and 1, 3-diazepine. In AIP Conference Proceedings (Vol. 2394, No. 1, p. 040037). AIP Publishing LLC.
Hamad, A. M., Atiyea, Q. M., Hameed, D. N. A., & Dalaf, A. H. (2023). Green synthesis of copper nanoparticles using strawberry leaves and study of properties, anti-cancer action, and activity against bacteria isolated from Covid-19 patients. Karbala International Journal of Modern Science, 9(1), 12.
Shawkat, Z. A, Tapabashi, N. O., Taha N. I., (2022). Schiff bases and its related cyclic compounds derived from4-aminoantipyrine as new type of push-pull compounds", Alutroha, 4, 39.
Mohammed, L. J., Hamad, A. M., Atiyea, Q. M., Jwair, W. A., Dalaf, A. H., Jasim, A. S., Elsaigher, S. M., Ragab, A., and Hassan, Z. H. S. (2022). In vitro Comparison of the Effect of Zinc Oxide Nanoparticles and Hibiscus sabdariffa Extract on Streptococcus mutans Isolated from Human Dental Caries. The Third International and
The Fifth Scientific Conference for College of Science –Tikrit University. 2(2): 5-14.
Kirdant, A. S., Shankarwar, S. G. and Chondhekar, T. K., (2010). Kinetics study and mechanism of hydrolysis of N-Salycylidene-m-chloroaniline. Int. J. Chem. Sci.: 8(1), 279-289,.
Hassib, H. B., Abdel-Kader, N. S., and Issa, Y. M. (2012). Kinetic study of the hydrolysis of schiff bases derived from 2-aminothiophenol. Journal of solution chemistry, 41, 2036-2046.
ABDEL‐RAHMAN, L. H., EL‐KHATIB, R. M., Nassr, L. A., & ABU‐DIEF, A. M. (2014). Reactivity trends and kinetic inspection of hydroxide ion attack and DNA interaction on some pharmacologically active agents of Fe (II) amino acid schiff base complexes at different temperatures. International Journal of Chemical Kinetics, 46(9), 543-553.
Dash, A. C., Dash, B., Mahapatra, P. K., & Patra, M. (1983). Hydrolysis of imines. Part 2. Kinetics and mechanism of hydrolysis of N-salicylidene-2-aminopyridine in the presence and absence of copper (II) ion. A study of the catalytic effect of some mixed-ligand complexes of copper (II). Journal of the Chemical Society, Dalton Transactions, (8), 1503-1509.
Prabhu, D. V., & Laxmeshwar, N. B. (1995). Kinetic Study of Hydrolysis of N-Salicylidene-o-methylaniline Spectrophotometrically. JOURNAL-INDIAN CHEMICAL SOCIETY, 72, 323-326.
Adam, F. A., & IL-HATY, M. T. (1988). SA EL-GYAR. Journal of the Indian Chemical Society, 65, 37-39.
Bruyneel, W., Charette, J. J., & De Hoffmann, E. (1966). Kinetics of hydrolysis of hydroxy and methoxy derivatives of N-benzylidene-2-aminopropane. Journal of the American Chemical Society, 88(16), 3808-3813.
Prabhu, D. V., Lalitha, K., & Laxmeshwar, N. B. (2004). Kinetics and reaction mechanism of the metal ion catalysed hydrolysis of some substituted salicylanils. J. Indian Chem. Soc, 81, 1103-1109.
Gangawani, K., Sharma, P. K., & Banerji, K. K. (2000). Kinetics and mechanism of the oxidation of substituted benzaldehydes by hexamethylenetetramine-bromine. J. Indian Chem. Soc. A, 39, 436.
Burungale, A. S., Padwal, S. L., Bondage, S. P., Ingle, R. D., & Mane, R. A. (2004). Kinetics of base catalysed O-acylation of hydroxamic acids.
Hibbert, F. (1977). Proton Transfer to and from Carbon. In Comprehensive chemical kinetics (Vol. 8, pp. 97-196). Elsevier.
Moore, J. W., & Pearson, R. G. (1981). Kinetics and mechanism. John Wiley & Sons.
Kulkarni, R. M., Bilehal, D. C., & Nandibewoor, S. T. (2002). Kinetic and mechanistic study of oxidative degradation of paracetamol by diperiodatonickelate (IV) in aqueous alkaline medium. Journal of Chemical Research, 2002(4), 147-148.
Hiremath, D. C., Hiremath, C. V., & Nandibewoor, S. T. (2006). Oxidation of paracetamol drug by a new oxidant diperiodatoargentate (III) in aqueous alkaline medium. E-Journal of chemistry, 3(1), 13-24.
Devra, V., & Yadav, M. B. (2012). Kinetics and mechanism of osmium (VIII) catalyzed oxidation of valine by hexacyanoferrate (III) in alkaline medium. Rasayan J. Chem, 5(1), 67-73.
Ilager, D., Seo, H., Shetti, N. P., Kalanur, S. S., & Aminabhavi, T. M. (2020). Electrocatalytic detection of herbicide, amitrole at WO3· 0.33 H2O modified carbon paste electrode for environmental applications. Science of the Total Environment, 743, 140691.
Hiremath, G. C., Mulla, R. M., & Nandibewoor, S. T. (2005). Mechanistic study of the oxidation of isonicotinate ion by diperiodatocuprate (III) in aqueous alkaline medium. Journal of Chemical Research, 2005(3), 197-201.
Abu-Nawwas, A. A. H., & Hameed, R. S. A. Kinetics and Mechanism of Base-Catalyzed Oxidation of 1, 4, 7, 10-Tetrazacyclododecane-1-Carbaldehyde with Hexacyanoferrate (III).