Main Article Content

Abstract

The purpose of this work is to examine the mechanism and kinetics of N-acetyl alanine oxidation by Chloramine-T (CAT) in a hydrochloric acid medium at temperatures between 30 and 50 degrees Celsius. First-order kinetic dependency on both the oxidant [CAT] and [H+] is indicated by the experimental results. On the other hand, there is zero-order dependence on the substrate reactant [S] and chloride ion [Cl-]. The reaction is barely impacted by the medium's ionic strength. The reaction between N-acetyl alanine and Chloramine-T shows a 1:1 stoichiometry in the acidic media. To find the activation parameters, the reaction was examined at five different temperatures, ranging from 30°C to 50°C. Spectroscopic analysis revealed that the ultimate oxidation product of N-acetyl Alanine was N-chloro acetyl Alanine.

Keywords

Chloramine-T N-acetyl Alanine kinetic oxidation Mechanistic

Article Details

How to Cite
Mohammed . H . Yaseen, Ghazwan H. Abed Elwahab, & Noor H. M. Saeed. (2024). OXIDATION OF N-ACETYL ALANINE BY CHLORAMINE-T IN PRESENCE OF HYDROCHLORIC ACID: A KINETIC AND MECHANISTIC STUDY. Central Asian Journal of Medical and Natural Science, 5(1), 205-214. https://doi.org/10.17605/cajmns.v5i1.2305

References

  1. 1. R. V. Murthy and B. S. Rao, (1952). Proc. Indian accd. Sci, 35,65.
  2. 2. M. M. Campbell and G. Johnson, (1978). Chem. Rev. 78, 65.
  3. 3. J. Coull, H. B. Hpoe and B. Gouguell, J. Amer, (1935). Chem. Soc., 75,1439.
  4. 4. D. S. Mahadevappa and B. T. Gowda, (1979). India J.Chem.,17A, 484.
  5. 5. M. S. Ahmed, B. T. Gowda and D. S. Mahadevappa, (1980). India J. Chem,19A, 650.
  6. 6. Nayak, Y. N., Gaonkar, S. L., Saleh, E. A. M., Dawsari, A. M. A., Husain, K., & Hassan, I. (2022). Chloramine-T (N-chloro-p-toluenesulfonamide sodium salt), a versatile reagent in organic synthesis and analytical chemistry: An up to datereview. Journal of Saudi Chemical Society, 26(2), 101416.‏
  7. 7. Liu, R., Zhou, X. C., He, X. Y., Li, Y. Q., Zheng, W., Wang, X., & Hu,J, (2022).‏ Modified and scalable synthesis of N-tosyl-4- chlorobenzene sulfonimidoyl fluoride (SulfoxFluor): direct imidation of sulfinyl chlorides with chloramine-T trihydrate. Organic Process Research & Development, 26(2), 380-386.
  8. 8. Sowmya, P. T., Rai, K. L., Sudhir, A., & Kotian, S. Y. (2021). Chloramine-T in organic synthesis and analysis of organic functional groups: a review. Australian Journal of Chemistry.‏
  9. 9. Malini, S., Raj, K., Kumari, L., Jayant, L., Shettihalli, A. K., & Appaji, A. (2023). Chloramine-T-induced oxidation of Rizatriptan Benzoate: An integral chemical and spectroscopic study of products, mechanisms and kinetics. Open Chemistry, 21(1), 20220341.‏
  10. 10. Haydari, A., Sheet, S., & Albayati, A. (2023). Kinetic Study for some effects on auto-catalyzed oxidation for Serine, Threonine and Tyrosine. Egyptian Journal of Chemistry, 66(2), 507-515.‏
  11. 11. Zhao, K., Han, D., He, S. R., Wu, L. Y., Liu, W. Y., & Zhong, Z. M. (2023). N-acetyl-L-cysteine attenuates oxidative stress-induced bone marrow endothelial cells apoptosis by inhibiting BAX/caspase 3 pathway. Biochemical and Biophysical Research Communications, 656, 115-121.‏
  12. 12. Liu, Y., Yu, J., Cao, H., Xue, C., Chen, K., Xu, Y., & Sun, X. (2023). The cross- linking ability of dialdo-galactose in food processing condition. Food Chemistry, 137356.‏
  13. 13. Morjan, R. Y. (2023). Review of synthesis of mono, bis and tris-1, 3, 4 oxadiazole and N-substituted-2, 5-disubstituted-1, 3, 4-oxadiazole. IUG Journal of Natural Studies, 31(1).‏
  14. 14. Vallabhajosula, S. (2023).Design of Radiolabeled Peptide Radiopharmaceuticals. In Molecular Imaging and Targeted Therapy: Radiopharmaceuticals and Clinical Applications (pp. 577-607). Cham: Springer International Publishing.‏
  15. 15. Vallabhajosula, S. (2023). Radiolabeled Antibodies for Imaging and Targeted Therapy. In Molecular Imaging and Targeted Therapy: Radiopharmaceuticals and Clinical Applications (pp. 533-575). Cham: Springer International Publishing.‏
  16. 16. Al-Niemi, H., & Mahmoud, M. (2023). Kinetic Study For The Reactions Of Paracetamol With Diazotized (P-Nitroaniline & Sulfanilic Acid Sodium Salt) Reagents. Egyptian Journal of Chemistry, 66(2), 535-542.‏
  17. 17. Sengupta, P. (2023). Elucidating the role of Glycoside Hydrolase 25 in microbial antagonsim (Doctoral dissertation, Universität zu Köln).‏
  18. 18. Pareek, D., Rolaniya, A., Bhasin, M., & Sailani, , (2023). R., Ruthenium (III) catalyzed oxidation of paracetamol by chloramine‐T in aqueous alkaline medium–A kinetic and mechanistic pathway. International Journal of Chemical Kinetics, 55(1), 39-48.
  19. 19. Pareek, D., Sailani, R., Bhasin, M., Goswami, A., & Manav, N, (2023).‏ Oxidation of paracetamol by N-chloro-p-toluene sulfonamide (Chloramine-T) in aqueous acid perchlorate medium: A kinetic and mechanistic pathway. Indian Journal of Chemistry (IJC), 62(7), 780-787.
  20. 20. Curling, E. A., McKie, M. J., Meteer, L., Saunders, B., Andrews, S. A., & Andrews, R. C., (2022). ‏Estimation of chloramine decay in drinking water distribution systems. Journal of Water Process Engineering, 46, 102558.
  21. 21. Mahmoud D. Abdulrahman, Fattma Z. Mohammed, Saber W. Hamad, Harmand A. Hama, and Abubakar A. Lema., (2022). Medicinal Plants Traditionally Used in the Management of COVID-19 in Kurdistan Region of Iraq., ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X., 87-98. [21].
  22. 22. Robins, L., Keim, E., Robins, D., Edgar, S., Meschke, J., Gafken, P., & Williams, J., (2021). Modification of IL-6 by hypochlorous acid: effects on receptor binding and possible role in treatment of COVID-19.
  23. 23. Zhang, A., Ding, Y., Jia, A., Park, M., Daniels, K. D., Nie, X., ... & Snyder, S. A., (2022).‏ Removal of 26 corticosteroids, potential COVID-19 remedies, at environmentally relevant concentrations in water using UV/free chlorine, UV/monochloramine, and UV/hydrogen peroxide. Environmental Science: Water Research& Technology, 8(5), 1078-1091.
  24. 24. Elardo, N., Reitter, A., Malley, J., & Unger, M., Covid-19 Results in a Perfect Storm for Water Utilities, (2022)‏: Managing a New, Interconnected, Chloraminated Drinking Water System The Southern New Hampshire Regional Water Project Story. Journal of New England Water Works Association, 136(3).
  25. 25. Mohammed I. Jameel, Rabar J. Noori and Soma F. Rasul., (2022). In Silico Domain Structural ModelAnalysis of Coronavirus ORF1ab Polyprotein, ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X.,7-10 .
  26. 26. A. I. Vogel, (1978). "Text Book of partical Organic Chemistry", 4th ed. Longman, London, U. K. Book of Quantitave Inorganic Analysis" 3 rd Ed., longman Ltd., London.
  27. 27. G. Akerlof, (1932). J.Am.Chem.Soc. 54, 4125.
  28. 28. Mohammad G. Faraj., (2022). Effect of Substrate Temperature on the Electrical Properties of Al-doped Zinc Oxide Films Deposited on Polyethylene Terephthalate., ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X., 131-133.
  29. 29. Y. I. Hassan and A. A. AL-Hatim, Mutah., (1995).J. Res stud. 10, 19 .
  30. 30. Y. I. Hassan and N. H. M. Saeed, (2009). J. Educ. and Sci., 21, 9.
  31. 31. M. Natarajan and V. Thiagarajan, (1975). J. Chem. Soc., Perkin Trans.II, 1590.
  32. 32. D. S. Mahadevappa, S. Ananda, N. M. M. Gowda and K. S. Rangapa, (1985). J. Chem. Soc. Perken Trans. II, 39.
  33. 33. D. S. Mahadevappa, K. S. Rangappa, N. M. M. Gowda and B. Thimme Gowda, (1981). J. phys. chem., 85, (24), 3651-3658.
  34. 34. L. R. Pryed and F. G. Soper, (1931). J. Chem. Soc., 1510.
  35. 35. F. G. Soper, (1929). J. Chem. Soc.1899.
  36. 36. T. Higuchi and A. Hussain, (1967). J. Chem. Soc. B, 549.
  37. 37. G. Swain and D. R. Grist, (1940). J. Am. Chem. Soc., 17, 169.
  38. 38. E. S. Amis, (1972). Anal.Chem.1955, 27.
  39. 39. S. P. Mushran, R. M. Mehtrotra and R. Sanehi, (1974). J. Indian Chem. Soc.,51, 594.
  40. 40. Y. I. Hussain, (2003). Ph. D. Thesis, Mosul University, Mosul-Iraq.
  41. 41. Laider K. J., (1965). "Chemical Kinetic", McGraw-Hill, New Youk.