ANTIBIOTIC RESISTANCE PROFILES OF PSEUDOMONAS AERUGINOSA ISOLATED FROM CLINICAL SAMPLES
Abstract
Pseudomonas aeruginosa is identified as an opportunistic pathogen since it predominantly creates nosocomial infections in immune compromised people; total of 20 samples of P. aeruginosa obtained from a variety of locations in Baghdad hospitals isolated from: burns, wounds and sputum collected from October 2021 to the April 2022, isolates cultured by Using culture conditions, biochemical assays, and the VITEK-2 compact system. For all bacterial isolates, the antibiotic sensitivity test is valid according to the minimum inhibitory concentration (MICs). The maximum level of resistance was demonstrated to be against Tigecycline (8), followed by Cefazolin (64), while high sensitive was to Ciprofloxacin (0.25), followed by Levofloxacin (0.5) and Gentamicin (1), cefepime (1), Ceftazidime (2) and Imipenem (2), Amikacin (2) and Piperacillin /Tazobactum (8) respectively according to MICs results of each antibiotics.
References
2. Ahmed, I., Rabbi, M. B., & Sultana, S. 2019. Antibiotic resistance in Bangladesh: A systematic review. International Journal of Infectious Diseases, 80: 54-61.
3. Ali, A. M., Al-Kenanei, K. A., & Bdaiwi, Q. O. 2020. Molecular study of some virulence genes of Pseudomonas aeruginosa isolated from different infections in hospitals of Baghdad. Reviews in Medical Microbiology, 31(1): 26-41.
4. Kadhim, A. S., & Al-Karawi, A. S. (2023). Insights into the Pathogenesis, Virulence Factors, and Diagnosis of Helicobacter pylori: A Comprehensive Review. American Journal of Bioscience and Bioinformatics, 2(1), 31-37.
5. Cui, C. Y., He, Q., Jia, Q. L., Li, C., Chen, C., Wu, X. T., & Sun, J. 2021. Evolutionary trajectory of the Tet (X) family: critical residue changes towards high-level tigecycline resistance. Msystems, 6(3): e00050-21.
6. Ding, J., Gao, X., Gui, H., Ding, X., Lu, Y., An, S., & Liu, Q. 2021. Proteomic Analysis of Proteins Associated with Inhibition of Pseudomonas aeruginosa Resistance to Imipenem Mediated by the Chinese Herbal Medicine Qi Gui Yin. Microbial Drug Resistance, 27(4): 462-470.
7. Faiz, M. A., Ding, C. H., Wahab, A. A., Tzar, M. N., Sulong, A., Wong, K. K., & Wong, P. F. 2022. The Antibiotic Resistance Profile of Pseudomonas Aeruginosa in a Tertiary Medical Center from Malaysia. Journal of Medicine, 23(1): 54-60.
8. Gallagher, J. C., & MacDougall, C. 2022. Antibiotics simplified. Jones & Bartlett Learning.
9. Kadum, M. M., AL-Marjani, M. F., & Ali, M. R. 2019. Colony Morphology and pelA, pslD and algD genes in Pseudomonas aeruginosa isolated from Baghdad Hospitals.
10. Kathleen, P. T. 2017. Foundations in microbiology: basic principles. Mcgraw-Hill US Higher Ed.
11. Keyal, N. K., Shrestha, M., & Ghimire, P. S. 2020. Antimicrobial Sensitivity Pattern in the Mixed Intensive Care Unit in a Tertiary Care Hospital of Eastern Nepal. Eastern Green Neurosurgery, 2(2): 9-15.
12. Kim, J. S., Yamasaki, R., Song, S., Zhang, W., & Wood, T. K. 2018. Single cell observations show persister cells wake based on ribosome content. Environmental microbiology, 20(6): 2085-2098.
13. Laverty, G., Gorman, S. P., & Gilmore, B. F. 2014. Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens, 3(3): 596-632.
14. Marko, D. C., Saffert, R. T., Cunningham, S. A., Hyman, J., Walsh, J., Arbefeville, S., ... & Richter, S. S. 2012. Evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization–time of flight mass spectrometry systems for identification of nonfermenting Gram-negative bacilli isolated from cultures from cystic fibrosis patients. Journal of clinical microbiology, 50(6): 2034-2039.
15. Molla, M. R., Haji, H. K., & Molla, N. M. 2020. View from the Other Side: A Perspective on Oral and Maxillofacial Surgery in a Developing Nation-Bangladesh. Oral and Maxillofacial Surgery Clinics, 32(3): 377-388.
16. Patel, J. B., Cockerill, F. R. and Bradford, P. A. 2015. Performance standards for antimicrobial susceptibility testing: twenty-fifth informational supplement.
17. Streeter, K., & Katouli, M. 2016. Pseudomonas aeruginosa: a review of their pathogenesis and prevalence in clinical settings and the environment.
18. Sharba, M. M., Mohammed, A. A., & Mohammed, S. F. Isolation and Characterization of tannase from isolated Bacillus subtilis.
19. Shabra, M. M., Mohammed, S. F., & Mohammed, A. A. STUDIES ON ANTIMICROBIAL AND ANTIFUNGAL SURFACTANT-LIKE BIOMOLECULE FROM SOIL ISOLATE.
20. Wu, M., & Li, X. 2015. Klebsiella pneumoniae and Pseudomonas aeruginosa. In Molecular medical microbiology (pp. 1547-1564). Academic Press.
21. Yang, S., Cheng, X., Jin, Z., Xia, A., Ni, L., Zhang, R. and Jin, F. 2018. Differential production of Psl in planktonic cells leads to two distinctive attachment phenotypes in Pseudomonas aeruginosa. Applied and environmental microbiology, 84(14): pp.e00700-18.