Main Article Content

Abstract

Introduction: Chronic acne vulgaris (AV) is a skin inflammatory condition that affects the pilosebaceous glands. Aim: Isolation and identification of Staphylococcus epidermidis from acne vulgaris in Dhi Qar city and study of some genes (tetK, hlb and nuc) of Staphylococcus epidermidis. Materials & methods: 210 specimens were collected (113 females and 97 male) from acne patients with age ranged from (14-38) years old. From August to September of 2022, a dermatologist from Thi-Qar province in Iraq used a private clinical lab to make a clinical diagnosis for the patients. Specimen were taken from the forehead, cheek, and chin of the patients. 70% ethanol was used to sanitize the sampling site. Transport media was employed to collect the samples. A lancet was used to make a scrape on the lesion's surface, and the fluid was then removed with light hand pressure in order to remove and extract the closed comedones and the papules. Results: It was discovered that 87 (41.4%) of the total samples showed positive results for the growth of S. epidermidis in the best cultured media, including blood agar, mannitol agar, and MacConkey agar. Out of all the samples, 123 (58.6%) showed negative results for S. epidermidis growth. Staphylococcus epidermidis showed total resistance to Penicillin, Oxacillin and Cefoxitin and total sensitive to Nitrofurantoin. The results of PCR assay revealed that 75 (86.2%) of S. epidermidis isolates giving positive results for tetK gene. Despite the fact the hlb gene finds in percentage 21 (24.1%), while 42 (48.3%) of S. epidermidis harbored nuc gene, as represented in Table (4-6). The whole genomic DNA of S. epidermidis isolates.

Keywords

S. epidermidis acne vulgaris PCR tetK gene

Article Details

How to Cite
Jasim Mhaibes M. Alkharsan, Hamidreza Mollasalehi, & Abbas Dakheel Mutar. (2024). DETECT SOME GENES (TETK, HLB AND NUC) OF STAPHYLOCOCCUS EPIDERMIDIS ISOLATED FROM ACNE VULGARIS. Central Asian Journal of Medical and Natural Science, 5(1), 85-92. https://doi.org/10.17605/cajmns.v5i1.2283

References

  1. 1. Abraham, E.P., Chain, E. 1940. An enzyme from bacteria able to destroy penicillin. Nature 146: 837.
  2. 2. Aricola, C.R. ; Campoccia, D. and Montanaro, L. ( 2001 ) . Effects on antibiotic resistance of Staphylococcus epidermidis following adhesion to polymethylmethacrylate and to silicone surfaces . Rizzoli Orthopaedic Institute . 23: 1495-1502 .
  3. 3. Benner N; Sammons D. Overview of the Treatment of Acne Vulgaris, Osteopath Family Physic 2013; 5(5): 185–90p.
  4. 4. Berlin DJ, Goldberg AL. Acne and Rosacea Epidemiology, Diagnosis and Treatment, London: Manson Pub, 2012, 8p.
  5. 5. Bhate K, Williams HC. Epidemiology of acne vulgaris. Br J Dermatol. 2013;168(3):474-85.
  6. 6. Dawson AL, Dellavalle RP. Acne Vulgaris, BMJ 2013; 346: f2634p.
  7. 7. Domínguez, E., Zarazaga, M., Torres, C. 2002. Antibiotic resistance in Staphylococcus isolates obtained from fecal samples of healthy children. J Clin Microbiol 40(7): 2638-41.
  8. 8. Duran, N., Ozer, B., Duran, G.G., Onlen, Y. and Demir, C. (2012) Antibiotic resistance genes and susceptibility patterns in staphylococci. Indian J. Med. Res., 135: 389-396.
  9. 9. Eladli, M.G., Alharbi, N.S., Khaled, J.M., Kadaikunnan, S., Alobaidi, A.S., Alyahya, S.A. 2018. Antibiotic-resistant Staphylococcus epidermidis isolated from patients and healthy students comparing with antibiotic-resistant bacteria isolated from pasteurized milk. Saudi J Biol Sci 26(6): 1285-90.
  10. 10. Finan, J.E., Rosato, A.E., Dickinson, T.M., Ko, D., Archer, G.L. 2002. Conversion of oxacillinresistant staphylococci from heterotypic to homotypic resistance expression. Antimicrob Agents Chemother 46(1): 24-30.
  11. 11. Haque N., Hossain M.A., Bilkis L., Musa A.K., Mahamud C., Bari M.S., Muhammad N., Parvin U.S., Islam M.T., Khan S.I., Islam M.A., Haque S. Antibiotic susceptibility pattern of Staphylococcus epidermidis. Mymensingh Med. J. 2009;18:142–147.
  12. 12. Harder, J., Bartels, J., Christophers, E. and Schroder, JM. 1997. A peptide antibiotic from human skin. Nature; 387: 861.
  13. 13. Hashosh T T, Yasir A J, Rasha M O. Molecular Detection of CRISPR-Cas System in Staphylococcus epidermidis Isolated from Different Sources in Iraq. BASRAH J. VETER. RES. 2022; 21(2):15-30.
  14. 14. Jamali, H., Radmehrc, B. and Salmah, I. (2014) Short communication: Prevalence and antibiotic resistance of Staphylococcus aureus isolated from bovine clinical mastitis. J. Dairy Sci., 97: 2226-2230
  15. 15. Jos, M.B.M., Vossen,V., Hofstra, H. 1996. DNA based typing identification and detection systems for food spoilage microorganisms: Development and implementation. Int. J. Food Microbiol., 33: 35-49.
  16. 16. Massey, R.C., Horsburgh, M.J., Lina, G., Hook, M., Recker, M. 2006. The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission? Nat Rev Microbiol 4(12): 953-8.
  17. 17. Miller, D.M. ; Flynn, H.W. ; Miller, D. ; Scott, I.U. ; Smiddy, W.E ; Murray, T.G. and Venkatraman, A.S. ( 2005 ) . Endophthalmitis caused by Staphylococcus epidermidis : Clinical outcomes and invitro antibiotic susceptibilities . Invest. Ophthalmol. Vis. Sci. 46: 3295 .
  18. 18. Mossialos, E., Morel, C.M., Edwards, S., Berenson, J., Gemmill-Toyama, M., Brogan, D. 2010. Policies and incentives for promoting innovation in antibiotic research. Copenhagen. World Health Organization.
  19. 19. Odd GM, Kjetill A , Johan AM (1992). Detection of Staphylococcus aureus by using the polymerase chain reaction amplification of the nuc gene Methicillin resistant Staphylococcus aureus (MRSA) using polymerase chain reaction amplification .Tohoku J.Exp.Med.163:31-37.
  20. 20. Olesen, S.W., Barnett, M.L., MacFadden, D.R., Brownstein, J.S., Hernandez-Diaz, S., Lipsitch, M., Grad, Y.H. 2018. The distribution of antibiotic use and its association with antibiotic resistance. eLife 7: e39435.
  21. 21. Oliveira WF, Silva PM, Silva RC, Silva GM, Machado G, Coelho LC, Correia MT. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect. 2017;98(2):111–7.
  22. 22. Prestinaci, F., Pezzoti, P., Pantosti, A. 2015. Antimicrobial resistance: a global multifaceted phenomenon. Pathogen and Global Health 109(7): 309-18.
  23. 23. Roberts, M.C. (1996) Tetracycline resistance determinants: Mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev., 19: 1-24.
  24. 24. Sechi, L.A. ; Pinna, A. ; Pusceddu, C. ; Fadda, G. ; Carta, F. And Zanetti, S. ( 1999 ) . Molecular charaterization and antibiotic susceptibilities of ocular isolates of Staphylococcus epidermidis . J. Clin. Microbiol. 37 (9) : 3031-3033 .
  25. 25. Shah SK, Alexis AF. Acne in Skin of Color: Practical Approaches to Treatment, J Dermatol Treat 2010; 21(3): 206–11p.
  26. 26. Spencer EH, Ferdowsian HR, Barnard ND. Diet and Acne: A Review of the Evidence, Int J Dermatol 2009; 48(4): 339–47p.
  27. 27. Studer, E., Schaeren, W., Naskova, J., Pfaeffli, H., Kaufmann, T., Kirchhofer, M. 2008. A longitudinal field study to evaluate the diagnostic properties of a quantitative real-time polymerase chain reaction-based assay to detect Staphylococcus aureus in milk. J. Dairy Sci., 91: 1893-1902.
  28. 28. Thappa D, Adityan B, Kumari R. Scoring Systems in Acne Vulgaris. Indian J Dermatol Ve 2009; 75(3): 323–6p.
  29. 29. Thorberg, B.M., Danielsson-Tham, M.L., Emanuelson, U. and PerssonWaller, K. (2009) Bovine subclinical mastitis caused by different types of coagulase-negative Staphylococci. J. Dairy Sci., 92: 4962-4970
  30. 30. Velasco, V., Sherwood, J.S., Rojas-Garcı´a, P.P., Logue, C.M. 2014. Multiplex Real-Time PCR for Detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL) Genes from Selective Enrichments from Animals and Retail Meat. PLoS ONE 9(5): e97617.
  31. 31. White GM. Recent Findings in the Epidemiologic Evidence, Classification, and Subtypes of Acne Vulgaris. J Am Acad Dermatol 1998; 39(2): S34–7p.