Main Article Content

Abstract

Sickness is a problem that affects one in three people. Unneeded illness and death are the outcome of this. The availability of clean drinking water has significantly improved, but inadequate sanitation is eroding these advancements. With the provision of affordable equipment and hygiene teaching, we can eliminate this unnecessary suffering and death. The use of biological treatment technology to treat slaughterhouse effluent is a highly practical and cost-effective option. Various technical approaches were examined in order to obtain the necessary quality of effluents for disposal or reuse. However, most practical procedures come with a slew of benefits and drawbacks. However, because slaughterhouse waste contains biodegradable organic matter, anaerobic digestion technology is frequently used for commercial advantage. The common approaches utilized in the treatment of wastewater in slaughterhouses, as well as their applicability, are discussed in this study. The benefits and drawbacks of various techniques were weighed. Anaerobic, facultative lakes, Additionally demonstrated to be effective were drip filters and the activated sludge method, however they needed longer start-up periods. The different tactics utilized in other wastewater treatment to create useful by-products through anaerobic digestion are also explored in this study.

Keywords

sww Massacres and bioremediation

Article Details

How to Cite
Abdulazeem, L., jasim, M. muwafaq, aaraji, A. T. A., Muslim, Z. A., & Rasheed, A. H. (2024). CLEAN WATER AND SANITATION IN BIOREMEDIATION TREATMENT OF SLAUGHTERHOUSE WASTE AS ENVIRONMENTALLY SAFE SOLUTIONS THAT SERVE SUSTAINABLE DEVELOPMENT. Central Asian Journal of Medical and Natural Science, 5(1), 12-24. https://doi.org/10.17605/cajmns.v5i1.2270

References

  1. 1. Quinn, J. and Mc Farlane, P., Effects of Slaughterhouse and Dairy Factory Wastewater On Epilithon: A Comparison In Laboratory Streams. Water Res., 23,1267-1273. (1989).
  2. 2. Masse D. I. and Masse L., Treatment of Slaughterhouse Waste- Water in Anaerobic Sequencing Batch Reactors, Canadian Agricultural Engineering, vol. 42(3), 131–137 (2000( .
  3. 3. Seif H., Moursy A., Treatment of Slaughterhouse Wastes. In: Sixth International Water Technology Conference. JWTC, Alexandria, Egypt, pp. 269-275, (2001(.
  4. 4. Mishra S., Sharma M.P., Kumar A. X., Assessment of Surface Water Quality in Surha Lake using Pollution Index., Journal of Materials and Environmental Science 7(Y), 713-719 (2016 (.
  5. 5. Elhdad A.M.A., Assessment of Surface Water Quality, Raw versus Treated, for Different Uses at Dakahlia Governorate, Egypt, Egyptian Journal of Chemistry, 62(6), 1117-1129(2019(.
  6. 6. Tritt, W. P. , Schuchardt, F., Materials Flow and Possibilities of Treating Liquid and Solid Wastes from Slaughterhouses in Germany. A review. Biores. Technol., 41, 235-245. (1992.(
  7. 7. Polprasert, C., Kemmadamorng P. and Tran F.T., Anaerobic Baffle Reactor (ABR) Process for Treating A Slaughterhouse Wastewater. Envir. Technology 13: 857-865, (1992(.
  8. 8. Sirianuntapiboon, S. Manoonpong, K., Application of Granular Activated Carbon – Sequencing Batch Reactor (GAC-SBR) System for Treating Wastewater from Slaughterhouse. Thammasat Int. J. Sci. Technol., 6(1).16-25 (2001.(
  9. 9. Matsumura, E.M., Mierzwa, J.C., Water Conservation and Reuse in Poultry Processing Plant- A Case Study. Resour. Conserv. Recycl., 52 (6), 835-842. (2008(.
  10. 10. Aniebo A.O, Wekhe S.N., and OkoliI.C., Abattoir blood waste generation in rivers state and its environmental implications in the Niger Delta, Toxicological and Environmental Chemistry, 91(4), pp. 619–625. (2009(.
  11. 11. Michael N.N., Terry W.S. and Graig L.B., Anaerobic Contact Pretreatment of Slaughterhouse Wastewater. Proc. Ind Waste Conf., 42nd 647. (1988(.
  12. 12. Sangodoyin, A.Y. and Agbawhe O.M., Environmental Study on Surface and Groundwater Pollutants from Abattoir Effluents. Bioresource Technology 41:193-200, (1992.(
  13. 13. Woolard C.R., The Advantages of Periodically Operated Biofilm Reactors for The Treatment of Highly Variable Wastewater., Water Science and Technology, 35(1)199-206, (1997( .
  14. 14. Arceivala SJ, Asolkar SR., Wastewater Treatment for Pollution Control and Reuse. 3rd ed. Tata McGraw-Hill Publishing Co. Ltd. New Delhi, India. (2007.(
  15. 15. Masse L., Masse DI., Effect of Soluble Organic, Particulate Organic and Hydraulic Shock Loads on Anaerobic Sequencing Batch Reactors Treating Slaughterhouse Wastewater At 20C. Process Biochem. 40: 1225–1232, (2005(.
  16. 16. Torkian A, Eqbali A, Hashemian SJ., The Effect of Organic Loading Rate on The Performance of UASB Reactor Treating Slaughterhouse Effluent. Resour Conserv Recy 40: 1–11, (2003(.
  17. 17. Manjunath NT, Mehrotra I, Mathur RP., Treatment of Wastewater From Slaughterhouse by DAF-UASB system. Water Res 34: 1930– 1936. (2000(.
  18. 18. Palatsi J., Vinas M., Guivernau M., Fernandez B, Flotats X., Anaerobic Digestion of Slaughterhouse Waste: Main Process Limitations and Microbial Community Interactions. Bioresource Technol 102: 2219–2227, (2011).
  19. 19. Cuetos M.J., Gomez X., Otero M., Moran A., Anaerobic Digestion of Solid Slaughterhouse Waste (SHW) at Laboratory Scale: Influence Of Co-Digestion With The Organic Fraction Of Municipal Solid Waste (OFMSW). Biochem Eng J 40, 99– 106. (2008).
  20. 20. Masse. D.I, Masse, L., Characterization Of Wastewater From Hog Slaughterhouses In Eastern Canada And Evaluation of Their In-Plant Wastewater Treatment Systems. Can. Agr. Eng. 42 (3), 139-146. (2000(.
  21. 21. Barrera, M.; Mehrvar, M.; Gilbride, K.; McCarthyc, L.H.; Laursen, A.E.; Bostan, V.; Pushchakd, R. Photolytic treatment of organic constituents and bacterial pathogens in secondary effluent of synthetic slaughterhouse wastewater. Chem. Eng. Res. Des.2012, 90, 1335–1350. [Google Scholar] [CrossRef]
  22. 22. Adami, L.; Schiavon, M. From Circular Economy to Circular Ecology: A Review on the Solution of Environmental Problems through Circular Waste Management Approaches. Sustainability 2021, 13, 925. [Google Scholar] [CrossRef]
  23. 23. Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed].
  24. 24. Bustillo‐Lecompte C.F., Mehrvar M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. Journal of Environmental Management. 2015;161:287–302. DOI: 10.1016/ j.jenvman.2015.07.008
  25. 25. Pierson, J.A.; Pavlostathis, S.G. Real-Time Monitoring and Control of Sequencing Batch Reactors for Secondary Treatment of a Poultry Processing Wastewater. Water Environ. Res. 2000, 72, 585–592. [Google Scholar] [CrossRef]
  26. 26. Martineza, S.L.; Torrettab, V.; Minguelac, J.V.; Siñerizd, F.; Rabonib, M.; Copellib, S.; Cristina Radae, E.; Ragazzie, M. Treatment of slaughterhouse wastewaters using anaerobic filters. Environ. Technol. 2014, 35, 322–332. [Google Scholar] [CrossRef]
  27. 27. Massé, D.I.; Masse, L. Characterization of wastewater from hog slaughterhouses in Eastern Canada and evaluation of their in-plant wastewater treatment systems. Can. Biosyst. Eng. Genie Biosyst. Can. 2000, 42, 139–146. [Google Scholar]
  28. 28. Jensen P.D., Yap S.D., Boyle‐Gotla A., Janoschka J., Carney C., Pidou M., et al. Anaerobic membrane bioreactors enable high rate treatment of slaughterhouse wastewater. Biochemical Engineering Journal. 2015;97:132–141. DOI: 10.1016/j.bej.2015.02.009
  29. 29. Bustillo‐Lecompte C.F., Mehrvar M., Quiñones‐Bolaños E. Combined anaerobic‐ aerobic and UV/H2O2 processes for the treatment of synthetic slaughterhouse waste‐ water. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering. 2013;48(9):1122–1135. DOI: 10.1080/1093 4529.2013.774662
  30. 30. Mittal G.S. Treatment of wastewater from abattoirs before land application—a review. Bioresource Technology. 2006;97(9):1119–1135. DOI: 10.1016/j.biortech.2004.11.021
  31. 31. Chan Y. J., Chong M. F., Law C. L., Hassell D. A review on anaerobic‐aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal. 2009;155(1–2): 1–18. DOI: 10.1016/j.cej.2009.06.041
  32. 32. Fu, Y.; Luo, T.; Mei, Z.; Li, J.; Qiu, K.; Ge, Y. Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China. Sustainability 2018, 10, 4588. [Google Scholar] [CrossRef]
  33. 33. Kim, K.Y.; Yang, W.; Ye, Y.; LaBarge, N.; Logan, B.E. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater. Bioresour. Technol.2016, 208, 58–63. [Google Scholar] [CrossRef]
  34. 34. Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valorization 2017, 8, 267–283. [Google Scholar] [CrossRef]
  35. 35. Wu, P.F.; Mittal, G.S. Characterization of provincially inspected slaughterhouse wastewater in Ontario, Canada. Can. Biosyst. Eng. Genie Biosyst. Can.2012, 54, 9–18. [Google Scholar] [CrossRef]
  36. 36. McCabe, B.K.; Hamawand, I.; Harris, P.; Baillie, C.; Yusaf, T. A case study for biogas generation from covered anaerobic ponds treating abattoir wastewater: Investigation of pond performance and potential biogas production. Appl. Energy 2014, 114, 798–808. [Google Scholar] [CrossRef]
  37. 37. Gannoun, H.; Bouallagui, H.; Okbi, A.; Sayadi, S.; Hamdi, M. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter. J. Hazard. Mater. 2009, 170, 263–271. [Google Scholar] [CrossRef] [PubMed]
  38. 38. Rajakumar, R.; Meenambal, T.; Banu, J.R.; Yeom, I.T. Treatment of poultry slaughterhouse wastewater in upflow anaerobic filter under low upflow velocity. Int. J. Environ. Sci. Technol. 2011, 8, 149–158. [Google Scholar] [CrossRef]
  39. 39. Stets, M.I.; Etto, R.M.; Galvão, C.W.; Ayub, R.A.; Cruz, L.M.; Steffens, M.B.R.; Barana, A.C. Microbial community and performance of slaughterhouse wastewater treatment filters. Genet. Mol. Res. 2014, 13, 4444–4455. [Google Scholar] [CrossRef] [PubMed]
  40. 40. Foxon, F.M.; Buckley, C.A. Guidelines for the Implementation of Anaerobic Baffled Reactors for On-Site or Decentralized Sanitation; University of Kwazulu Natal: Glenwood, Durban, 2006. [Google Scholar]
  41. 41. Tilley, E.; Ulrich, L.; Luethi, C.; Reymond, P.; Zurburegg, C.; Lüthi, C.M.; Antoine, Z.C.; Schertenleib, R. Compendium of Sanitation Systems and Technologies; Swiss Federal Institute of Aquatic Science and technology (Eawag): Dübendorf, Switzerland, 2014. [Google Scholar]
  42. 42. Kuşçu, Ö.S.; Sponza, D.T. Performance of anaerobic baffled reactor (ABR) treating synthetic wastewater containing p-nitrophenol. Enzyme Microb. Technol.2005, 36, 888–895. [Google Scholar] [CrossRef]
  43. 43. Cao, W.; Mehrvar, M. Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes. Chem. Eng. Res. Des. 2011, 89, 1136–1143. [Google Scholar] [CrossRef]
  44. 44. Lettinga, G.; van Velsen, A.F.M.; Hobma, S.W.; De Zeeuw, W.; Klapwijk, A. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment. Biotechnol. Bioeng. 1980, 22, 699–734. [Google Scholar] [CrossRef]
  45. 45. Rajeshwari, K.V.; Balakrishnan, M.; Kansal, A.; Lata, K.; Kishore, V.V.N. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew. Sustain. Energy 2000, 4, 135–156. [Google Scholar] [CrossRef]
  46. 46. Amorim, A.K.B.; De Nardi, I.R.; Del Nery, V. Water conservation and effluent minimization: Case study of a poultry slaughterhouse. Resour. Conserv. Recycl. 2007, 51, 93–100. [Google Scholar] [CrossRef]
  47. 47. Del Nery, V.; Pozzi, E.; Damianovic, M.H.R.Z.; Domingues, M.R.; Zaiat, M. Granules characteristics in the vertical profile of a full-scale upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Bioresour. Technol.2008, 99, 2018–2024. [Google Scholar] [CrossRef]
  48. 48. Daud, M.K.; Rizvi, H.; Akram, M.F.; Ali, S.; Rizwan, M.; Nafees, M.; Jin, Z.S. Review of upflow anaerobic sludge blanket reactor technology: Effect of different parameters and developments for domestic wastewater treatment. Hindawi 2018, 2018, 1–13. [Google Scholar] [CrossRef]
  49. 49. Caldera, E.Y.; Madue, P.; Griborio, A.; Fernandez, G.N. Effect of the organic load in the performance the UASB reactor treating slaughterhouse effluent. Rev. Tec. Fac. Ing. Univ. Zulia 2005, 28, 119–127. [Google Scholar]
  50. 50. Chávez, C.P.; Castillo, R.L.; Dendooven, L.; Escamilla-Silva, E.M. Poultry slaughter wastewater treatment with an up-flow anaerobic sludge blanket (UASB) reactor. Bioresour. Technol. 2005, 96, 1730–1736. [Google Scholar] [CrossRef]
  51. 51. Rajakumar, R.; Meenambal, T. Comparative study on start-up performance of HUASB and AF reactors treating poultry slaughterhouse wastewater. Int. J. Environ. Res. 2008, 2, 401–410. [Google Scholar]
  52. 52. Mijalova Nacheva, P.; Reyes Pantoja, M.; Lomelí Serrano, E.A. Treatment of slaughterhouse wastewater in upflow anaerobic sludge blanket reactor. Water Sci. Technol. 2011, 41, 181–185. [Google Scholar]
  53. 53. Chollom, M.N.; Rathilal, S.; Swalaha, F.M.; Bakare, B.F.; Tetteh, E.K. Study of the start-up of an upflow laboratory-scale anaerobic sludge blanket for the treatment of slaughterhouse wastewater. WIT Trans. Ecol. Environ. 2017, 216, 123–130. [Google Scholar]
  54. 54. Batubara, F.; Ritonga, N.A.; Turmuzi, M. Start-Up of Upflow Anaerobic Sludge Blanket (UASB) Reactor Treating Slaughterhouse Wastewater. J. Phys. Conf. Ser. 2018, 1116, 042008. [Google Scholar] [CrossRef]
  55. 55. Del Nery, V.; Damianovic, M.H.Z.; Barros, F.G. The use of upflow anaerobic sludge blanket reactors in the treatment of poultry slaughterhouse wastewater. Water Sci. Technol. 2001, 44, 83–88. [Google Scholar] [CrossRef] [PubMed]
  56. 56. Torkian, A.; Eqbali, A.; Hashemian, S.J. The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent. Resour. Conserv. Recycl. 2003, 40, 1–11. [Google Scholar] [CrossRef]
  57. 57. Worku, Z. Anaerobic Digestion of Slaughterhouse Wastewater for Methane Recovery and Treatability. Int. J. Sustain. Green Energy 2017, 6, 84. [Google Scholar] [CrossRef]
  58. 58. Singh, K.S.; Harada, H.; Viraraghavan, T. Low-strength wastewater treatment by a UASB reactor. Bioresour. Technol. 1996, 55, 187–194. [Google Scholar] [CrossRef]
  59. 59. Hazrati, H.; Shayegan, J. Optimizing OLR and HRT in a UASB reactor for pretreating high-Strength municipal wastewater. Chem. Eng. Trans. 2011, 24, 1285–1290. [Google Scholar] [60] Kaparaju, P.; Serrano, M.; Angelidaki, I. Optimization of biogas production from wheat straw stillage in UASB reactor. Appl. Energy 2010, 87, 3779–3783. [Google Scholar] [CrossRef]
  60. 60. Al‐Mutairi N.Z. Aerobic selectors in slaughterhouse activated sludge systems: a preliminary investigation. Bioresource Technology. 2009;100(1):50–58. DOI: 10.1016/ j.biortech.2007.12.030
  61. 61. Keskes S., Hmaied F., Gannoun H., Bouallagui H., Godon J.J., Hamdi M. Performance of a submerged membrane bioreactor for the aerobic treatment of abattoir wastewater. Bioresource Technology. 2012;103(1):28–34. DOI: 10.1016/j.biortech.2011.09.063
  62. 62. Vymazal J. Constructed wetlands for treatment of industrial wastewaters: a review. Ecological Engineering. 2014;73:724–751. DOI: 10.1016/j.ecoleng.2014.09.034
  63. 63. Gutiérrez‐Sarabia A., Fernández‐Villagómez G., Martínez‐Pereda P., Rinderknecht‐ Seijas N., Poggi‐Varaldo H.M. Slaughterhouse wastewater treatment in a full‐ scale system with constructed wetlands. Water Environment Research. 2004;76(4): 334–343. DOI: 10.2175/106143004X141924
  64. 64. Al-Karawi, A. S., Abdullah, A. M., Abdulraziq, M. S., Alubadi, A. E., Ajmi, R. N., & Ati, E. M. (2023). THE ENVIRONMENTAL REALITY OF DESERTIFICATION IN IRAQ/2022: A REVIEW ARTICLE. Open Access Repository, 9(6), 226-234.‏
  65. 65. Mbuligwe S.E. Waste management and resource recovery in the food processing industry: the livestock industry. In: Bellinghouse V.C., editor. Food Processing: Meth‐ ods, Techniques and Trends. New York, NY: Nova Science Publishers, Inc.; 2009. p. 77– 113.
  66. 66. Sgarbossa F., Russo I. A proactive model in sustainable food supply chain: insight from a case study. International Journal of Production Economics. 2016;1–11. DOI: 10.1016/ j.ijpe.2016.07.022 (in press).
  67. 67. Abdullah, A. M., Al-Karawi, A. S., Aswad, O. A. K., Alubadi, A. E., Ati, E. M., & Ajmi, R. N. (2023). Natural Reserves and Sustainable Development of AL-Tayeb Reserve/South Iraq: A Review Article. Global Scientific Review, 16, 29-37.‏
  68. 68. Manios T., Gaki E., Banou S., Klimathianou A., Abramakis N., Sakkas N. Closed wastewater cycle in a meat producing and processing industry. Resources, Conserva‐ tion and Recycling. 2003;38(4):335–345. DOI: 10.1016/S0921‐3449(02)00169‐6