The Impact of Promix Probiotics on the Growth and Survival of Pangas (Pangasius Pangasius) In the Biofloc System at 40% CP Feed

  • Ruqia Bibi Zoology Department Ghazi university, Dera Ghazi Khan, Pakistan
  • Ali Hassan Zoology Department Ghazi university, Dera Ghazi Khan, Pakistan
  • Azmat Ullah Zoology Department Ghazi university, Dera Ghazi Khan, Pakistan
  • Muhammad Junaid Shahid Zoology Department Ghazi university, Dera Ghazi Khan, Pakistan
  • Ubaid Ullah Department: Zoology, University: Government college university, Lahore
  • Muhammad Adeel Department of zoology, wildlife and fisheries, University of Agriculture Faisalabad
  • Syeda Aleena Ubaid Department of pharmaceutics, Faculty of Pharmacy Bahauddin Zakariya University, Multan
  • Hafiz Muhammad Usman Abid Department of pharmaceutics, Faculty of Pharmacy Bahauddin Zakariya University, Multan
  • Usman Haider Department of zoology, wildlife and fisheries, University of Agriculture Faisalabad
  • Mohsin Nazir Department-Institute of Zoology University name-Bahauddin Zakriya university, Multan
  • Muhammad Ahmad Department of Zoology, Ghazi University, D.G.Khan
  • Awais khan Department of Innovative technology of biomedical engineering and medical devices, University: Ming chi university of technology
Keywords: Biofloc

Abstract

Biofloc is an environmentally and socially acceptable super intensive system that overcomes the problem of limited water, land and feed causing increase in aquaculture productivity. In the present study 200 fingerlings of yellow catfish, (Pangasius pangasius) with average body weight (5.17±0.09g, 5.10±0.06g) and length (2.52±0.0cm, 2.54±0.01cm) in control and biofloc were cultured in indoor circular cemented tanks respectively for 10 weeks. Water exchange system as a control group (̊C) and biofloc (BF) with two carbon sources (probiotics of Big fish Company and molasses added had a C/N rate of 15:1 to form the floc) under limited water exchange at 5% feed of 40% CP feed. Several water quality parameters were maintained in a specific range such as dissolved oxygen (6.5-7.4 mg/L), temperature (25-29°C), and nitrate (1.1-1.7mg/L). pH (6.9-8), total dissolved solids (1.4-2.3mg/L), total ammonia nitrogen (0.4-0.8mg/L) and nitrite (0.4-1.3mg/L) and on weekly basis the assessment of survival rate and growth parameters in term of length gain, weight gain, specific growth rate and feed conversion efficiency along with water quality variables consisting of temperature, dissolved oxygen, pH, nitrates, total ammonia nitrogen and total dissolved solids was done during 10 week experiment in control and biofloc tanks of P. pangasius. The survival rate of the Pangas fingerlings was not significantly different in both control and biofloc groups. However survival was more in biofloc based culturing system as compared to control. The specific growth rate (SGR) of P.pangasius fingerlings in biofloc groups was significantly (p< 0.05) higher than that of control group. The feed conversion ratios (FCR) of the fish was not significantly different in both groups but was less in biofloc (0.48±0) than control (0.56±0.01) in last, as well as almost every week of the experiment. Therefore, this study demonstrated the suitability of probiotics use in aquaculture as wastewater purifying, growth-promoting, and survival-enhancing technology for culture of P.pangasius.

References

1. Abass, N. Y., Alsaqufi, A. S., Makubu, N., Elaswad, A. H., Ye, Z., Su B., Qin, Z., Li, H., and Dunham, A. R. (2017). Genotype-environment interactions for growth and survival of channel catfish (Ictalurus punctatus), blue catfish (Ictalurus furcatus), and channel catfish, Ictalurus punctatus, ♀ × blue catfish, Ictalurus furcatus, ♂ hybrid fry at varying levels of sodium chloride. Journal of Aquaculture, 471: 28-36.
2. Abdel-Tawwab, M. and Ahmad, M. H. (2009). Live Spirulina (Arthrospira platensis) as a growth and immunity for Nile tilapia, Oreochromis niloticus L., challenged with pathogenic bacteria Aeromonas hydrophila. Aquaculture Research, 40: 1-10.
3. Abedin, M. J., Bapary, M. A. J., Rasul, M. G., Majumdar, B. C. and Haque, M. M. (2017). Water quality parameters of some Pangasius ponds at Trishal Upazila, Mymensingh, Bangladesh. European Journal of Biotechnology and Bioscience, 5(2): 29-35.
4. Ahmad, I., Babitha Rani, A. M., Verma, A. K. and Maqsood, M. (2017). Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquaculture International, 25(3): 1215-1226.
5. Ahmad, I., Leya, T., Saharan, N., Asanaru Majeedkutty, B. R., Rathore, G., Gora, A. H., Bhat, I. A., and Verma, A. K. (2019). Carbon sources affect water quality and haemato‐biochemical responses of Labeo rohita in zero‐water exchange biofloc system. Aquaculture Research, 50: 2879-2887.
6. Allameh, S. K., Noaman, V. and Nahavandi, R. (2017). Effects of probiotic bacteria on fish performance. Advanced Techniques in Clinical Microbiology, 1(2), 11.
7. Amornsakun, T., Vo, H. V., Petchsupa, N., Pau, M. T. and Hassan, B. A. (2017). Effects of water salinity on hatching of egg, growth and survival of larvae and fingerlings of snake head fish, Channa striatus. Songklanakarin Journal of Science and Technology, 39(2): 137-142.
8. Anand, P. S. S., Kohli, S. P. M., Kumar, S., Sundaray, K. J. and Roy, D. S. (2014). Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418-419: 108-115.
9. Asaduzzaman, M., Wahab, A. M., Verdegem, J. C. M., Huque, S., Salam, A. M. and M. E. Azim, E. M., (2008). C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280: 117-123.
10. Avnimelech, Y. (2009). Biofloc technology: a practical guide book. World Aquaculture Society.
11. Azim, M. E. and Little, D. C. (2008). The Biofloc technology (BFT) in indoor tanks water quality, Biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(2): 29-35.
12. Balcazar, J. L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D. and Muzquiz, J. L. (2006).The role of probiotics in aquaculture. Veterinary Microbiology, 114 (3-4): 173-186.
13. Castex, M., Chim, L., Pham, D., Lemaire, P. and Wabete, N. (2008). Probiotic P. acidilactic application in shrimp Litopenaeus stylirostris culture subject to vibriosis in New Caledonia. Aquaculture, 275: 182-193.
14. Cha, J. H., Rahimnejad, S., Yang, S. Y., Kim, K. W. and Lee, K. J. (2013). Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives.
15. Chattopadhyay, K., Xavier, K. A. M., Layana, P., Balange, A. K. and Nayak, B. B. (2019). Chitosan hydrogel inclusion in fish mince based emulsion sausages: Effect of gel interaction on functional and physicochemical qualities. International Journal of Biological Macromolecules, 134: 1063-1069.
16. Correia, E., Wilkenfeld, J., Morris, T., Weic, L., Prangnell, D. and Samocha, T. (2014). Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacultural Engineering, 59: 48-54.
17. Dahiya, T. (2020). Applications and possible modes of action of probiotics in aquaculture. International Journal of Agriculture Sciences, ISSN: 0975-3710.
18. Daniel, N. and Nageswari, P. (2017). Exogenous probiotics on biofloc based aquaculture: a review. Current Agriculture Research Journal, 5(1): 88.
19. Dauda, A. B., Romano, N., Ebrahimi, M., Teh, J. C., Ajadi, A., Chong, C. M., Karim, M., Natrah, I. and Kamarudin, M. S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483: 120–130.
20. Decamp, O., Moriarty, D. J. W. and Lavens, P. (2008). Probiotics for shrimp larviculture: Review of field data from Asia and Latin America. Aquaculture Research, 39(: 334-338.
21. De-Alvarenga, E. R., de-Sales, S. C. M., de-Brito, T. S., Santos, C. R., Correa, R. D. S., Alves G. F. D. O., Manduca, L. G. and Turra, E. M. (2017). Effect of biofloc technology on reproduction and ovarian recrudescence in Nile tilapia. Aquaculture Research, 1-8.
22. De Paiva, E., Alves, G., Otavio, L., Olivera, A. and Vasconcelos, T.C. (2016). Intensive culture system of Litopenaeus vannamei in commercial ponds with zero water exchange and addition of molasses and probiotics. Journal of Marine Biology and Oceanography, 51(1): 61-67.
23. Dasgupta, S., Huq, M., Mustafa, M. G., Sobhan, M. I. and Wheeler, D. (2017). The impact of aquatic salinization on fish habitats and poor communities in a changing climate: evidence from southwest coastal Bangladesh. Ecological Economics, 139: 128-139.
24. De-Schryver, P. Crab, R. Defoirdt, T. Boon, N. and Verstraete, W. (2008). The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277(3-4): 125-137.
25. Ekasari, J., Suprayudi, M. A., Wiyoto, W., Hazanah, R. F., Lenggara, G. S., Sulistiani, R. and Zairin, J. M. (2016). Biofloc technology application in African catfish fingerling production: the effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture, 464, 349-356.
26. El-Shafiey, M. H. M., Mabroke, R. S., Mola, H. R. A., Hassaan, M. S. and Suloma, A. (2018). Assessing the suitability of different carbon sources for Nile tilapia, Oreochromis niloticus culture in BFT system. Aquaculture, Aquarium, Conservation and Legislation, Bioflux, 11(3): 782-795.
27. Emerenciano, M., Gaxiola, G. and Cuzon, G. (2013). Biofloc technology (BFT): a review for aquaculture application and animal food industry. Biomass Now-Cultivation and Utilization, 301-328.
28. Emerenciano, M. G. C., Martinez-Cordova, L. R., Martinez-Porchas, M. and Miranda-Baeza, A. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water Quality, 5: 92-109.
29. FAO (2017). FAO and the SDGs. Indicators: Measuring up to the 2030 Agenda for Sustainable Development.
30. FAO (2020). The State of World Fisheries and Aquaculture 2020 Sustainability in action.
31. Garcia-Rios, L., Miranda-Baeza, A., Emerenciano, M. G. C. and Huerta- Rábago, J. A. and Osuna-Amarillas, P. (2019). Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture, 502: 26-31.
32. Golovina, N. A., Romanova, N. N., Golovin, P. P., Simonov, V. M., Dementyev, V. N., Shishanova, E. I., Trenkler, I. V., Ponomarev, S. V., Konovalenko, L. Yu. And Mishurov, N. P. (2019). Analysis of the State and Perspective Areas of Development of Aquaculture, Moscow: Rosinformagrotekh.
33. Gupta, S. (2016). Pangasius pangasius (Hamilton, 1822), a threatened fish of Indian Subcontinent. Journal of Aquaculture Research and Development, 7(2): 400.
34. Hwihy, H., Zeina, A., Abu Husien, M. and El-Damhougy, K. (2021). Impact of Biofloc technology on growth performance and biochemical parameters of Oreochromis niloticus. Egyptian Journal of Aquatic Biology and Fisheries, 25(1): 761-774.
35. Hai, N. V. (2015). The use of probiotics in aquaculture. Journal of Applied Microbiology, 119(4): 917-935.
36. Hasimuna, O. J., Maulu, S. and Mphande, J. (2020). Aquaculture health management practices in Zambia: status, challenges and proposed biosecurity measures. Journal of Aquaculture Research and Development, 11(3): 1-6.
37. Hidalgo, M. C., Skalli. A., Abellan, E., Arizcun, M. and Cardenete, G. (2006). Dietary intake of probiotics and maslinic acid in juvenile dentex (Dentex dentex L.): effects on growth performance, survival and liver proteolytic activities. Aquaculture Nutrition, 12: 256-266.
38. Hostins, B., Braga, A., Lopes, D., Wasielesky, W. and Poersch, L., 2015. Effect of temperature on nursery and compensatory growth of pink shrimp Farfantepenaeus brasiliensis reared in a super intensive biofloc system. Aquacultural Engineering, 66: 62-67.
39. Iffat, J., Tiwari, K. V., Verma, K. A., and Pavan-Kumar, A. (2020). Effect of different salinities on breeding and larval development of common carp, Cyprinus carpio (Linnaeus, 1758) in inland saline groundwater. Aquaculture, 518 (734658): 734658.
40. Jamal, M. T., Broom, M., Al-Mur, B. A., Al Harbi, M., Ghandourah, M., Al Otaibi, A. and Haque, M. F. (2020). Biofloc technology: Emerging microbial biotechnology for the improvement of aquaculture productivity. Polish Journal of Microbiology, 69(4): 401-409.
41. Jimenez-Ojeda, Y. K., Collazos-Lasso, L. F. and Arias-Castellanos, J. A. (2018). Dynamics and use of nitrogen in Biofloc Technology-BFT. Aquaculture, Aquarium, Conservation and Legislation, Bioflux, 11(4): 1107-1129.
42. Kaewnuratchadasorn, P., Smithrithee, M., Sato, A., Wanchana, W., Tongdee, N. and Sulit, V. T. (2020). Capturing the impacts of COVID-19 on the fisheries value chain of southeast asia. Fish for the People, 18(2): 2-8.
43. Kassem, T., Shahrour, I., El Khattabi, J. and Raslan, A. (2021). Smart and Sustainable Aquaculture Farms. Sustainability, 13(19): 10685.
44. Khanjani, M. H., Alizadeh, M. and Sharifinia, M. (2020). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquaculture Nutrition, 26(2): 328- 337.
45. Kumari, N., Singh, C. B., Kumar, R., Xavier, K. M., Lekshmi, M., Venkateshwarlu, G. and Balange, A. K. (2016). Development of Pangasius steaks by improved sous-vide technology and its process optimization. Journal of Food Science and Technology, 53(11): 4007-4013.
46. Kumar, V., Roy, S., Meena, D. K. and Sarkar, U. K. (2016). Application of probiotics in shrimp aquaculture: importance, mechanisms of action, and methods of administration. Reviews in Fisheries Science and Aquaculture, 24(4): 342-368.
47. Lestari, D. P., Azhar, F. and Marzuki, M. (2021). The effect of biofloc with the addition of different commercial probiotics in Catfish (Clarias sp). Journal of Tropical Biology, 21(2): 361-367.
48. Mirzakhani, N., Ebrahimi, E., Jalali, S. A. H. and Ekasari, J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512: 734235.
Published
2023-11-25
How to Cite
Bibi , R., Hassan , A., Ullah, A., Shahid, M. J., Ullah, U., Adeel, M., Ubaid, S. A., Abid, H. M. U., Haider, U., Nazir, M., Ahmad, M., & khan, A. (2023). The Impact of Promix Probiotics on the Growth and Survival of Pangas (Pangasius Pangasius) In the Biofloc System at 40% CP Feed. Central Asian Journal of Medical and Natural Science, 4(6), 739-761. https://doi.org/10.17605/cajmns.v4i6.2115
Section
Articles