Anatomical and Histological Study for Nasal Glands in Geese (Anser Anser)
Abstract
The present investigation aimed to study the anatomical, histological and characterizations of the nasal glands( Nasal glands) of the geese. birds Phoenicopterus ruber roseus. The results of the present investigation shows that the geese(Anser anser) has a well developed bilateral salt glands which consist of an array of secretory lobules surrounded by richly avascularized connective tissue. Each lobe is made of a mass of branched secretory tubules radiate from central canal and enmeshed in one cell layer blood capillaries. The secretory tubule consists of simple cuboidal epithelium surrounding a narrow lumen showing round basal cells at their terminal segments. The secretory tubules and central canals drain in a main duct leads to the anterior of the nasal cavity.
References
2. Adam, P., andWiecek, B. M. (1983). The salt glands of Samolus repens. Wetl. Aust. J. 3, 2–11.
3. Adams, P., Nelson, D. E., Yamada, S., Chmara, W., Jensen, R. G., Bohnert, H. J., et al. (1998). Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138, 171–190.
4. Adolf, V. I., Jacobsen, S. E., and Shabala, S. (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ. Exp. Bot. 92, 43–54.
5. Adolf, V. I., Shabala, S., Andersen, M. N., Razzaghi, F., and Jacobsen, S. E. (2012). Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357, 117–129
6. Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., et al. (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J. Exp. Bot. 58, 1957–1967.
7. Ahn, J. H., Kim, J. S., Kim, S., Soh, H. Y., Shin, H., Jang, H., et al. (2015). De novo transcriptome analysis to identify anthocyanin biosynthesis genes responsible for tissue-specific pigmentation in Zoysiagrass (Zoysia japonica Steud.). PLoS ONE 10:e0124497.
8. Akhani, H., Barroca, J., Koteeva, N., Voznesenskaya, E., Franceschi, V., Edwards, G., et al. (2005). Bienertia sinuspersici (Chenopodiaceae): a new species from southwest asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Syst. Bot. 30, 290–301.
9. Altpeter, F., Springer, N. M., Bartley, L. E., Blechl, A. E., Brutnell, T. P., Citovsky, V., et al. (2016). Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510–1520.
10. Amaradasa, B. S., and Amundsen, K. (2016). Transcriptome profiling of buffalograss challenged with the leaf spot pathogen Curvularia inaequalis. Front. Plant Sci. 7:715.
11. Amarasinghe, V., and Watson, L. (1988). Comparative ultrastructure of microhairs in grasses. Bot. J. Linn. Soc. 98, 303–319.
12. Hughes, M. R. (1995). Responses of gull kidneys and salt glands to NaCl loading. Can.J. Physiol. Pharmacol., 73:1727-1732.
13. Knut, S.-N. (1960)The Salt-Secreting Gland of Marine Birds. American Heart Association. 21:955-967.
14. Braun, E. J. (1999). Integration of organ systems in avian osmoregulation. J. exp. Zool.:702-707.
15. Hughes, M. R. (1980).Glomerular filtration rate in saline acclimated ducks, gulls and geese. Comp. Biochem. Physiol. 65(A): 211-213.
16. Nabipour, A.; Alishahi, E. and Asadianm, M. (2009). Some Histological and Physiological Features of Avian Kidney. J. Appl. Anim. Res. 36: 195-198.
17. Lierz, M. (2003). Avian renal disease: pathogenesis, diagnosis and therapy. Vet. Clin. Exot. Anim., 6:29-55.
18. Lafi, A. B. (2012).morphological and histological study for the kidney of Coot Bird (Fulica atra).Bas.J.Vet.Res.11.(1):128-136.
19. Mansour, I. Al Mansour. (2007). Anatomy, Histology and Histochemistry of the Salt Glands of the Greater Flamingo Phoenicopterus ruber roseus (Aves, Phoenicopteridae). Saudi J. Biol. Sci., 14 (2) 145-152.
20. Schmidt-Nielsen K (1960). The salt-secreting gland of marine birds. Circulation., 21:955 -967.
21. Müller C, Hildebrandt JP (2003). Salt glands- the perfect way to get rid of too much sodium chloride. Biologist, 50: 255-258.
22. Müller C, Sendler M. ,Hildebrandt JP (2006). Down regulation of aquaporins 1 and 5 in nasal gland by osmotic stress in ducklings, Anas platyrhynchos: implications for the production of hypertonic fluid. J. Exp. Biol., 209: 4067-4076.
23. Bennett DC, Hughes RM ( 2003). Comparison of renal and salt gland function in three species of wild ducks. J. Exp. Biol., 206: 3273-3284.
24. Hughes MR , Kitamura N, Bennett DC, Gray DA, Sharp PJ, Poon AM (2007). Effect of melatonin on salt gland and kidney function of gulls, Larus glaucescence. Gen. Comp. Endocrinol., 151: 300-307.
25. El- Badry ASO, Ali AA, Ali W AA, Ahmed MA (2011). The role of nasal gland and vitamin c in alleviate the adverse effects of osmotic stress on ostrich. Egy. Poult. Sci., 31: 233-247.
26. Haley D (1984). Seabirds of Eastern North Pacific and Arctic Waters, Seattle. Washington: Pacific Search Press, p22.
27. Sabat P, Farina JM, Gamboa MS (2003). Terrestrial birds living on marine environments: Does dietry composition of Cinclodes nigrofumosus (Passeriformes: Furnariidae) predict their osmotic load?. Rev. Chil. Hist. Nat., 76: 335-343.
28. Nagy KA, Peterson CC (1988). Scaling of water flux rate in animals. Univ. Calif. Publ. Zool., 120.
29. Bennett DC, Gray DA, Hughes MR (2003). Effect of saline intake on water flux and osmotic homeostasis in Pekin ducks (Anas platyrhynchos). J. Comp. Physiol., 173: 27 -36.
30. Al-Mansour ,I (2007). Anatomy, histology and histochemistry of the salt glands of the greater flamingo Phoenicopterus rubber roseus (Aves,Phoenicopteridae). Saudi J. Biol. Sci., 14: 137-144.
31. El Gohary ZMA, El-Sayad FI, Ramadan MM (2009).Comparative studies on the structural organization of the salt glands of two different avian species.Egypt. J. Zool., 53: 18-22.
32. Simon E (1981). Effects of CNS temperature on generation and transmission of temperature signals in homeotherms. A common concept for mammalian and avian thermoregulation. Pflügers. Arch., 392: 79–88.
33. Dunson WA, Dunson MK, Ohmart RD (1976). Evidence for the presence of nasal salt glands in the roadrunner and the coturnix quail. J. Exp. Zool., 198: 209-216.
34. Merchant JL, Papermaster DS, Barrnett RJ (1985). Correlation of Na+,K+-ATPase content and plasma membrane surface area in adapted and de-adapted salt glands of ducklings. J. Cell Sci.., 78: 233-246.
35. El Gohary ZMA (2013). Anatomica l and functional alterations of the goose salt gland subjected to sodium chloride. J.Egypt.Ger.Soc.Zool.,58:65-78.
36. Holmes WN, Fletcher GL, Stewart DJ (1968). The patterns of renal electrolyte excretion in the duck (Anas
37. Darin, C.B. and Maryanne, R.H. (2003).Comparison of renal and salt gland function in three species of wild ducks.J.Exp.Biol.206:3273-3284.
38. Kalisinsska, F.; Daticzak,A. ;Pierko, M. and Wyscoki, D. (1999).relationship between kidney mass and body size in some Anseriformes. Anat. Histol. Emberyol. 28:55-59
39. Amy, M. B.,: James, G.: and Larry, J. R.(2008). Avian renal proximal tubules epithelium urate secretion is mediated by Mrp4.Am. J. Regul. Integr. Comp. Physiol., 295: R 2024-2033.
40. Casotti, G. (2001). Effects of season on kidney morphology in house sparrows. J. Ex
41. Barkla, B. J., Vera-Estrella, R., and Pantoja, O. (2012). Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum. Proteomics 12, 2862–2865.
42. El-Gohary, Z.M.A. (2009). Anatomical and Functional Alterations of the Goose Salt
Gland Subjected to Sodium Chloride. The Egyptian Journal of Hospital Medicine, 51:346-
360.
43. EL-Gohary, Z.M.A., El-Sayad, F.I. and Ramadan, M.M. (2009). Comparative Studies
on the Structural Organization of the Salt Glands of Two Different Avian Species.
Egyptian Journal Zoology, 53(2):18-22.
44. El-Gohary, Z.M.A., El-Sayad, F.I., Hanna, A.H. and Aya, M. (2013). The Functional
Alliterations of the Avian Salt Gland Subsequent to Osmotic Stress. The Egyptian Journal
zoology, 51(2):346-360.
45. El-Gohary, Z.M.A., El-Sayad, F.I., Hanna, A.H. and Aya, M. (2013). Structural
Adaptations Associated with Osmotic Stress of The Salt Gland in Birds. The Egyptian
Journal of Hospital Medicine, 51(1):332-345.
46. Hossler, F.E. and Olson, K.R. (1990). Micro Vascularization of the Nasal Salt of the
Duckling (Anas platyrhynchos): Quantitative Responses to Osmotic Adaptation and De
adaptation Studied with Vascular Corrosion Casting. Journal of Experimental Zoology
254(1):237-247.
47. Hussein, A.A.K., Hussein, A.J. and Mustafa, S. (2006). Topographical and Histological
study of the Salt Gland of the Moor Hen (Gallinula c, choropus). Marsh Bulletin Journal,
(2):93-98.
48. Jarrar, B.M. and Basher (2009). Microanatomy and Histochemistry of the Salt Glands
of the Kentish Plover (Charadrius alexandrines) Journal Biological Science, 9(3):75-80.
49. Maysoon, A.M. (2012). A Comparative Morph-Metric Study of Salt Gland in Some
Domesticated and Wild Marine Birds. Basra Journal Veterinary Research, 11(1):349-353.
50. Reshag, A.F., Abood, D. and Maysoon, A.A. (2014). Histological Changes of Kidney
and Salt Glands in Response to Over Load Salty Water in Mallard Ducks (Anas.
platyrhynchos). Kufa Journal, 5(2):347-356.107
51. Reshag, A.F., Abood, D. and Mohammed, S.D. (2016). Anatomical and Histological
Study of the Kidneys and Salt Glands in Great Flamingos (phoenico pterusroseus). The
Iraqi Journal of Veterinary Medicine, 40(1):140-146.
52. Reshag, A.F., Abood, D. and Khayoon, E. (2017). Histological and Histochemical
Characteristic of the Kidneys in Different Avian Species. Australian Journal of Basic and
Applied Sciences, 11(16):36-44.
53. Waleed, J.A.A. (2016). Microanatomy and Histological Study of the Salt Glands of the
territorial lovebirds (Agapornis taranta). Kufa Journal for Veterinary Medical Sciences,
7(1):229-237.