GC-MS ANALYSIS OF MICROORGANISM MARKERS IN PLANTS (REVIEW)

  • Bahranova M.A Samarkand State University named after Sharof Rashidov, Samarkand, Republic of Uzbekistan
  • Mukhamadiev N.K Samarkand State University named after Sharof Rashidov, Samarkand, Republic of Uzbekistan
  • Khalilov K.F Samarkand State University named after Sharof Rashidov, Samarkand, Republic of Uzbekistan
  • Mukhamadiev A.N. Samarkand State University named after Sharof Rashidov, Samarkand, Republic of Uzbekistan
  • Alikulov B.S Samarkand State University named after Sharof Rashidov, Samarkand, Republic of Uzbekistan
Keywords: microorganism, marker, fatty acids, gas chromatography, analysis

Abstract

The presence of microorganisms in plants can have a significant impact on their growth, development and general health. Traditional methods for identifying and characterizing these microorganisms can be time consuming and often lack specificity. In recent years, gas chromatography-mass spectrometry (GC-MS) has become a powerful method for the analysis of microorganism markers in plants. This review article presents the principles and applications of GC-MS in the analysis of microorganism markers, indicating its advantages and limitations. In addition, it discusses various case studies in which GC-MS has been successfully used to detect and identify microorganisms in plants, paving the way for improved plant disease control strategies.

References

1. Tsavkelova E. L. et al. Microorganisms-producers of plant growth stimulants and their practical application (review) // Applied Biochemistry and Microbiology. - 2006. - T. 42. - No. 2. - S. 133-143.
2. Maksimov I. V., Abizgildina R. R., Pusenkova L. I. Microorganisms that stimulate plant growth as an alternative to chemical means of protection against pathogens (review) // Applied Biochemistry and Microbiology. - 2011. - T. 47. - No. 4. - S. 373-385.
3. Levitin M. M. Microorganisms in the conditions of global climate change // Agricultural biology. – 2015. – no. 5. - S. 641-647.
4. Zaikin VG Chromato-mass spectrometry in Russia // Journal of Analytical Chemistry. - 2011. - T. 66. - No. 11. - S. 1205-1209.
5. Yashin Ya. I., Yashin A. Ya. Analytical chromatography. Methods, equipment, application // Advances in Chemistry. - 2006. - T. 75. - No. 4. - S. 366-379.
6. Gladilovich V. D., Podolskaya E. P. Possibilities of using the GC-MS method (Review) // Scientific Instrumentation. - 2010. - T. 20. - No. 4. - S. 36-49.
7. Hübschmann HJ Handbook of GC-MS: fundamentals and applications. – John Wiley & Sons, 2015.
8. Pisanov R. V. et al. Identification of microorganisms using gas chromatography-mass spectrometry // Journal of Microbiology, Epidemiology and Immunobiology. – 2020. – no. 4. - S. 356-362.
9. Savelyeva E. I., Gavrilova O. P., Gagkaeva T. Yu. Application of solid-phase microextraction in combination with gas chromatography-mass spectrometry for the study of volatile biosynthesis products released by plants and microorganisms // Journal of Analytical Chemistry. - 2014. - T. 69. - No. 7. - S. 675-675.
10. Veselova M. A., Plyuta V. A., Khmel I. A. Volatile substances of bacteria: structure, biosynthesis, biological activity // Microbiology. - 2019. - T. 88. - No. 3. - S. 272-287. zzzz
11. Luca A., Kjær A., Edelenbos M. Volatile organic compounds as markers of quality changes during the storage of wild rocket //Food Chemistry. - 2017. - V. 232. - P. 579-586.
12. Barac T. et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants //Nature biotechnology. – 2004. – V. 22. – no. 5.-P. _ _ 583-588.
13. Rozentsvet O. A., Fedoseeva E. V., Terekhova V. A. Lipid biomarkers in the ecological assessment of soil biota : analysis of fatty acids // Successes of modern biology. - 2019. - T. 139. - No. 2. - S. 161-177.
14. Makhutova O. N., Sushchik N. N., Kalacheva G. S. Informativity of the composition of fatty acids of triacylglycerols and polar lipids of seston in the analysis of the feeding spectrum of microzooplankton of the small Bugach reservoir // Reports of the Academy of Sciences. - Federal State Budgetary Institution "Russian Academy of Sciences", 2004. - T. 395. - No. 4. - S. 562-565.
15. Verkhovtseva NV, Osipov GA Method of gas chromatography-mass spectrometry in the study of microbial communities of soils of agrocenosis //Problems of agrochemistry and ecology. - 2008. - no. 1. - S. 51-54.
16. Pollierer MM, Scheu S., Haubert D. Taking it to the next level: trophic transfer of marker fatty acids from basal resource to predators //Soil Biology and Biochemistry. - 2010. - T . 42. - no. 6. - S. 919-925.
17. Loshchinina E. A., Nikitina V. E. Changes in the content of stress metabolites of xylotrophic basidiomycetes under the influence of microorganisms // Mechanisms of resistance of plants and microorganisms to unfavorable environmental . - 2018. - S. 479.
18. Chetverikov S.P. New metabolites of bacteria of the genus Pseudomonas - inhibitors of the growth of phytopathogenic fungi : dis . - Ufa : [Inst. of biochemistry and genetics Ufim . scientific Center of the Russian Academy of Sciences], 2004.
19. Iturriaga G., Suárez R., Nova-Franco B. Trehalose metabolism: from osmoprotection to signaling //International journal of molecular sciences. - 2009. - T . 10. - no. 9. - S. 3793-3810.
20. Hennion N. et al. Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere // Physiologia plantarum . - 2019. - T . 165. - no. 1. - S. 44-57.
21. Haggag WM et al. Biotechnological aspects of microorganisms used in plant biological control //American-Eurasian Journal of Sustainable Agriculture. - 2007. - T . 1. - no. 1. - S. 7-12.
22. Smirnova O. G., Kochetov A. V. Plant cell wall and mechanisms of resistance to pathogens // Vavilov Journal of Genetics and Breeding. - 2016. - T. 19. - No. 6. - S. 715-723.
23. Kim D. et al. Glycopolymers cell wall - a chemotaxonomic marker of actinobacteria of the genus Clavibacter //VII Pushchino Conference "Biochemistry, Physiology and Biospheric Role of Microorganisms". School-conference for young scientists, graduate students and students "Genetic technologies in microbiology and microbial diversity". - 2021. - S. 50-51.
24. Bacete L. et al. Arabidopsis response regulator 6 (ARR6) modulates plant cell-wall composition and disease resistance //Molecular Plant-Microbe Interactions. - 2020. - T . 33. - no. 5. - S. 767-780.
25. Vargas- Asensio G. et al. Uncovering the cultivable microbial diversity of costa rican beetles and its ability to break down plant cell wall components // PLoS One. - 2014. - T . 9. - no. 11. - P. e113303.
26. Solovieva IV et al. Biological properties of lactobacilli . Prospects for use in the laboratories of Rospotrebnadzor express methods of amplification of nucleic acids (NAAT) in the quality control of food products, dietary supplements for food, dosage forms containing lactobacilli // Journal of MediAl . – 2014. – no. 2 (12). - S. 29-44.
27. Plotnikov VK Nanobiotechnological methods for the study of nucleic acids and prospects for their practical application // News of the Timiryazev Agricultural Academy. - 2009. - no. 4. - S. 58-70.
28. Malik AA et al. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling // Frontiers in Microbiology. - 2015. - T . 6. - S. 268.
29. Vlassov VV, Laktionov PP, Rykova EY Extracellular nucleic acids // Bioessays . - 2007. - T . 29. - no. 7. - S. 654-667.
30. Vladimirova AS et al. Fluorescent proteins as markers of conjugative interaction of nodule bacteria // Experimental plant biology: fundamental and applied aspects. - 2017. - S. 127-127.
31. Maksimov IV et al. Plant growth-stimulating bacteria in the regulation of plant resistance to stress factors // Plant Physiology. - 2015. - T. 62. - No. 6. - S. 763-775.
32. Chesnokov Yu. V. Biochemical markers in genetic studies of cultivated plants: applicability and limitations // Agricultural biology. - 2019. - T. 54. - No. 5. - S. 863-874.
33. Jain A. et al. Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum // Journal of Plant Growth Regulation. - 2013. - T . 32. - S. 388-398 .
34. Olempska -Beer ZS et al. Food-processing enzymes from recombinant microorganisms—a review //Regulatory toxicology and Pharmacology. - 2006. - T . 45. - no. 2. - S. 144-158.
35. Khoseeva E. V., Zimina Yu. A., Sroslova G. A. Oxidative stress of plants: chemistry, physiology, methods of protection // Natural systems and resources. - 2020. - T. 10. - No. 4. - S. 30-43.
36. Malinchik M. A. et al. Application of the 16S rRNA RFLP gene analysis method for the identification of bacteria of the genus Rhizobium : dis . – Siberian Federal University, 2017.
37. Pospíšil P., Prasad A., Rác M. Mechanism of the formation of electronically excited species by oxidative metabolic processes: role of reactive oxygen species //Biomolecules. - 2019. - T . 9. - no. 7. - S. 258.
38. Wilson SA, Roberts SC Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules // Plant biotechnology journal. - 2012. - T . 10. - no. 3. - S. 249-268.
39. Shipko E. S., Duvanova O. V. Changing the spectrum of fatty acids as one of the mechanisms of adaptation / persistence of microorganisms // Journal of Microbiology, Epidemiology and Immunobiology. – 2019. – no. 5. - S. 109-118.
40. Zelles L. Phospholipid fatty acid profiles in selected members of soil microbial communities // Chemosphere. - 1997. - T . 35. - no. 1-2. - S. _ 275-294.
41. Bessa RJB et al. Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen // Animal Feed Science and Technology. - 2009. - T . 150. - no. 3-4. - S. _ 197-206.
42. Vlaeminck B. et al. Factors affecting odd-and branched-chain fatty acids in milk: A review //Animal feed science and technology. - 2006. - T . 131. - no. 3-4. - S. _ 389-417.
43. Trefflich I. et al. Short-and branched-chain fatty acids as fecal markers for microbiota activity in vegans and omnivores //Nutrients. - 2021. - T . 13. - no. 6. - S. 1808.
44. Choi BSY et al. Feeding diversified protein sources exacerbates hepatic insulin resistance via increased gut microbial branched-chain fatty acids and mTORC1 signaling in obese mice //Nature communications. - 2021. - T . 12. - no. 1. - S. 3377.
45. Zakharchenko N. S. et al. Obtaining biosafe marker-free Camelina plants Sativa with increased resistance to phytopathogens // Mechanisms of resistance of plants and microorganisms to unfavorable environmental . - 2018. - S. 350.
46. Hinojosa MB et al. Microbial Response to Heavy Metal–Polluted Soils: Community Analysis from Phospholipid - Linked Fatty Acids and Ester - Linked Fatty Acids Extracts // Journal of Environmental Quality. - 2005. - T . 34. - no. 5. - S. 1789-1800.
47. Unger IM, Kennedy AC, Muzika RM Flooding effects on soil microbial communities // Applied Soil Ecology. - 2009. - T . 42. - no. 1. - S. 1-8.
48. Sakharuta I. Yu., Lagodich O. V. The use of molecular markers for the study of ISR // Biotechnology in crop production, animal husbandry and agricultural microbiology. - 2019. - S. 214-215.
49. Liu-Lyanmin E. I. Identification and determination of lipid components of hilly permafrost peatlands // Actual problems of biology and ecology. - 2021. - S. 78-81.
50. Saini RK et al. Omega- 3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits— A review //Antioxidants. - 2021. - T . 10. - no. 10. - S. 1627.
51. Rizzo G., Baroni L., Lombardo M. Promising sources of plant-derived polyunsaturated fatty acids: A narrative review // International Journal of Environmental Research and Public Health. - 2023. - T . 20. - no. 3. - S. 1683.
52. Sushchik N. N. The role of essential fatty acids in trophometabolic interactions in freshwater ecosystems (review) //Journal of General Biology. - 2008. - T. 69. - No. 4. - S. 299-316.
53. Caligiani A., Lolli V. Cyclic fatty acids in food: An under investigate class of fatty acids //Biochemistry and Health Benefits of Fatty Acids. - 2018. - T . 2018.
54. Munoz-Rojas J. et al. Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying //Applied and Environmental Microbiology. - 2006. - T . 72. - no. 1. - S. 472-477.
55. Dahlquist A. et al. A new class of enzymes in the biosynthetic pathway for the production of triacylglycerol and recombinant DNA molecules encoding these enzymes. – 2006. ( Patent )
56. Tyagi P. et al. Hydroxy fatty acids in snow pit samples from Mount Tateyama in central Japan: Implications for atmospheric transport of microorganisms and plant waxes associated with Asian dust // Journal of Geophysical Research: Atmospheres. - 2016. - T . 121. - no. 22. - S. 13.641-13.660.
57. Tyagi P. et al. Impact of biomass burning on soil microorganisms and plant metabolites: A view from molecular distributions of atmospheric hydroxy fatty acids over Mount Tai //Journal of Geophysical Research: Biogeosciences . - 2016. - T . 121. - no. 10. - S. 2684-2699.
58. Bikkina P. et al. Decadal Variations in Hydroxy Fatty Acids Over Chichijima Island in the North Pacific: Long - Term Seasonal Variability in Plant and Microbial Markers // Journal of Geophysical Research: Atmospheres. - 2021. - T . 126. - no. 21. - P. e2020JD033347.
59. Glyzina O. Yu. et al. Changes in the lipid composition of freshwater sponges with an increase in environmental temperature // Ecology. – 2016. – no. 2. - S. 152-155.
60. Silina A. V., Zhukova N. V. Benthic association of a bivalve mollusk with a borer polychaete and their potential food sources // Oceanology. - 2012. - T. 52. - No. 5. - S. 700-700.
61. Kirichenko K. A. et al. Comparative analysis of the fatty acid composition of coastal water Typha latifolia , submerged by Ceratophyllum demersum and water form Veronica anagallis-aquatica of water bodies of the Baikal region // Chemistry of plant raw materials. – 2019. – no. 4. - S. 119-128.
62. Kim EJ et al. Fatty acid profiles associated with microbial colonization of freshly ingested grass and rumen biohydrogenation // Journal of Dairy Science. - 2005. - T . 88. - no. 9. - S. 3220-3230.
63. Zhang LS et al. Microbial synthesis of functional odd-chain fatty acids: a review // World Journal of Microbiology and Biotechnology. - 2020. - T . 36. - S. 1-9.
64. Řezanka T., Sigler K. Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms // Progress in lipid research. - 2009. - T . 48. - no. 3-4. – S. 206-238.
65. Sushchik N. N. The role of essential fatty acids in trophometabolic interactions in freshwater ecosystems (review) //Journal of General Biology. - 2008. - T. 69. - No. 4. - S. 299-316.
66. Fan Y. et al. Week-old chicks with high Bacteroides abundance have increased short-chain fatty acids and reduced markers of gut inflammation //Microbiology Spectrum. - 2023. - T . 11. - no. 2. - S. e03616-22.
67. Nagpal R. et al. Modified Mediterranean- ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment // EBioMedicine . - 2019. - T . 47. - S. 529-542 .
68. Zhang YM et al. Relationships between rumen microbes, short-chain fatty acids, and markers of white adipose tissue browning during the cold season in grazing Mongolian sheep ( Ovis aries ) //Journal of Thermal Biology. - 2022. - T . 110. - S. 103386.
69. Kormilets O.N. Fatty acids in food webs of inland water ecosystems : dis . – Siberian Federal University, 2019.
70. Makhutova O. N., Gladyshev M. I. Essential polyunsaturated fatty acids in the physiology and metabolism of fish and humans: significance, needs, sources // Russian Journal of Physiology. IM Sechenov. - 2020. - T. 106. - No. 5. - S. 601-621-601-621.
71. Krivova Z. V., Maltsev E. I., Kulikovskiy M. S. Comparison of fatty acid profiles of different strains of the diatom Cyclotella meneghiniana Kützing from the salt lake Takhilt-Nuur (Mongolia) // Problems of Botany of Southern Siberia and Mongolia. - 2021. - T. 20. - No. 1. - S. 246-248.
72. Adarme -Vega TC et al. Microalgal biofactories : a promising approach towards sustainable omega-3 fatty acid production //Microbial cell factories. - 2012. - T . 11. - no. 1. - S. 1-10.
73. Lee JH et al. Omega-3 fatty acids: cardiovascular benefits, sources and sustainability //Nature Reviews Cardiology. - 2009. - T . 6. - no. 12. - S. 753-758.
74. Ye VM, Bhatia SK Metabolic engineering for the production of clinically important molecules: Omega - 3 fatty acids, artemisinin , and taxol //Biotechnology journal. - 2012. - T . 7. - no. 1. - S. 20-33.
75. Gessler N. N. et al. Oxylipins and ways of their synthesis in fungi //Applied Biochemistry and Microbiology. - 2017. - T. 53. - No. 6. - S. 568-579.
76. Starodumova I. P. Development of a classification system for actinobacteria of the genus Rathayibacter : dis . - M.: Federal Research Center "Fundamental Foundations of Biotechnology" of the Russian Academy of Sciences, Institute of Microbiology. SN Vinogradsky, 2018.
77. Varbanets L. D., Vasiliev V. N., Brovarskaya O. S. Characterization of lipopolysaccharides Ralstonia solanacearum //Microbiology. - 2003. - T. 72. - No. 1. - S. 19-25.
78. Ibekwe AM, Kennedy AC Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils //Plant and Soil. - 1999. - T . 206. - S. 151-161 .
79. Volova T. G. Modern biomaterials: world trends, place and role of microbial polyhydroxyalkanoates // Journal of the Siberian Federal University. Biology. - 2014. - T. 7. - No. 2. - S. 103-133.
80. Parshina V. V., Dyatlova Yu. A., Tugarova A. V. Ikfurier spectroscopic analysis of the accumulation of poly-3-hydroxybutyrate by Azospirillum cells brasilense with different duration of cultivation and ammonium concentration in the nutrient medium // Bulletin of the Saratov University. New episode. Series Chemistry. Biology. Ecology. - 2018. - T. 18. - No. 3. - S. 331-335.
81. Valentin HE et al. PHA production, from bacteria to plants //International Journal of Biological Macromolecules. - 1999. - T . 25. - no. 1-3. - S. _ 303-306.
82. Gasser I., Müller H., Berg G. Ecology and characterization of polyhydroxyalkanoate -producing microorganisms on and in plants //FEMS Microbiology Ecology. - 2009. - T . 70. - no. 1. - S. 142-150.
83. Walsh , T. A. et al. Production of DHA and other LC-PUFAs in plants. – 2018. ( Ratent )
84. Farag MA, Gad MZ Omega-9 fatty acids: Potential roles in inflammation and cancer management // Journal of Genetic Engineering and Biotechnology. - 2022. - T . 20. - no. 1. - S. 1-11.
85. HaghighiTM et al. Adaptation of Glycyrrhiza glabra L. to water deficiency based on carbohydrate and fatty acid quantity and quality //Scientific Reports. - 2023. - T . 13. - no. 1. - S. 1766.
86. Wang K. et al. Engineering the lipid and fatty acid metabolism in Yarrowia lipolytica for sustainable production of high oleic oils //ACS Synthetic Biology. - 2022. - T . 11. - no. 4. - S. 1542-1554.
87. Yakimova T. V., Nasanova O. N., Vengerovsky A. I. Antidiabetic effect of some medicinal plants (based on publications of the last 15 years) // Plant Resources. - 2016. - T. 52. - No. 1. - S. 3-19.
88. Dewhurst RJ et al. Forage breeding and management to increase the beneficial fatty acid content of ruminant products //Proceedings of the Nutrition society. - 2003. - T . 62. - no. 2. - S. 329-336.
89. Rodkina S.A. Fatty acids and other lipids of sea sponges //Biology of the sea. - 2005. - T. 31. - No. 6. - S. 387-397.
90. Kaneda T. Iso -and anteiso -fatty acids in bacteria: biosynthesis, function, and taxonomic significance //Microbiological reviews. - 1991. - T . 55. - no. 2. - S. 288-302.
91. Motelskaya V. A. et al. Modern methods of laboratory diagnosis of chlamydia // Journal of Microbiology, Epidemiology and Immunobiology. - 2008. - no. 4. - S. 111-117.
92. Jenske R., Vetter W. Enantioselective analysis of 2-and 3-hydroxy fatty acids in food samples // Journal of agricultural and food chemistry. - 2008. - T . 56. - no. 24. - S. 11578-11583.
93. Goossens H. et al. Lipids and their mode of occurrence in bacteria and sediments—II. Lipids in the sediment of a stratified, freshwater lake //Organic Geochemistry. - 1989. - T . 14. - no. 1. - S. 27-41.
94. Agafonova N. V. Taxonomic and functional characteristics of aerobic methylotrophic bacteria- phytosymbionts : dis . - - Pushchino: IBFM RAS, 2017. - 156 s, 2017.
95. Stainsby FM et al. Dispelling the “ Nocardia amarae ” myth: a phylogenetic and phenotypic study of mycolic acid-containing actinomycetes isolated from activated sludge foam // Water Science and Technology. - 2002. - T . 46. - no. 1-2. – S. 81-90.
96. Duchko M.A. Geochemistry of biomarkers in peats of the southeastern part of Western Siberia: dissertation for the degree of candidate of geological and mineralogical sciences: spec. 25.00. 09 : dis . – 2016.
97. Karpunina L. V. Exopolysaccharides of bacteria of the genera Xanthobacter and Ancylobacter : Characteristics and their biological properties: dissertation . for the competition of a candidate of biological sciences: spec. 03.02.03. - Saratov, 2019. - 121 p.
98. Plemenkov VV, Tevs OA Medico-biological properties and prospects of terpenoids ( isoprenoids ) // Chemistry of vegetable raw materials. – 2014. – no. 4. - S. 5-20.
99. Belin BJ et al. Hopanoid lipids: from membranes to plant–bacteria interactions //Nature Reviews Microbiology. - 2018. - T . 16. - no. 5. - S. 304-315.
100. Botirov E. Kh., Bonacheva V. M., Kolomiets N. E. Chemical composition and biological activity of plant metabolites of the genus Equisetum L // Chemistry of plant raw materials. – 2021. – no. 1. - S. 5-26.
101. Alotaibi SS et al. Transcriptome analysis of jojoba ( Simmondsia chinensis ) during seed development and liquid wax ester biosynthesis //Plants. - 2020. - T . 9. - no. 5. - S. 588.
102. Simoneit BRT Organic matter of the troposphere—V: application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations //Journal of Atmospheric Chemistry. - 1989. - T . 8. - S. 251-275 .
103. Saliot A. Sources markers in aerosols, oceanic particles and sediments //EPJ Web of Conferences. - EDP Sciences, 2009. - T . 1. - S. 189-197 .
104. Mayes RW et al. Discrimination of domestic garden soils using plant wax compounds as markers //Criminal and environmental soil forensics. - 2009. - S. 463-476 .
105. Osipov GA A method of calibrating a gas chromatography-mass spectrometry (GC-MS) system equipped with special software for determining microbial markers in a test sample of a material of biological origin. – 2013 ( Ratent ).
106. Reichel R. et al. Effects of slurry from sulfadiazine-(SDZ) and difloxacin -(DIF) medicated pigs on the structural diversity of microorganisms in bulk and rhizosphere soil //Soil Biology and Biochemistry. - 2013. - T . 62. - S. 82-91 .
107. Ourisson G., Rohmer M., Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates // Annual Reviews in Microbiology. - 1987. - T . 41. - no. 1. - S. 301-333.
108. Sˇamaj J. et al. Endocytosis, actin cytoskeleton, and signaling // Plant physiology. - 2004. - T . 135. - no. 3. - S. 1150-1161.
109. Akhmetshina E. A., Sirotkin A. S. Analysis of phospholipid fatty acids of microorganisms as environmental biomarkers // Bulletin of the Kazan Technological University. - 2014. - T. 17. - No. 19. - S. 233-236.
110. Evdokimov I. V., Larionova A. A., Stulin A. F. Turnover of "new" and "old" carbon in the biomass of soil microorganisms // Microbiology. - 2013. - T. 82. - No. 4. - S. 489-489.
111. Evdokimov I. V. Methods for determining the biomass of soil microorganisms // Russian Journal of Ecosystem Ecology . – 2018. – no. 3. - S. 1-20.
112. Machekhina VV Determination of the composition of fatty acids in sapropel by chromato-mass spectrometry using various extraction methods: master's thesis in the field of study: 04.04. 01-Chemistry. – 2016.
113. Willers C., Jansen van Rensburg PJ, Claassens S. Phospholipid fatty acid profiling of microbial communities–a review of interpretations and recent applications //Journal of applied microbiology. - 2015. - T . 119. - no. 5. - S. 1207-1218.
114. Miura T. et al. Comparison of fatty acid methyl ester methods for characterization of microbial communities in forest and arable soil: Phospholipid fraction (PLFA) versus total ester linked fatty acids (EL-FAME) // Pedobiologia . - 2017. - T . 63. - S. 14-18 .
115. Calderon FJ et al. Short - term dynamics of nitrogen, microbial activity, and phospholipid fatty acids after tillage //Soil Science Society of America Journal. - 2001. - T . 65. - no. 1. - S. 118-126.
116. Ignatov V. V. et al. Characteristics of the composition of fatty acids of lipids A of lipopolysaccharides of bacteria of the genus Azospirillum // Bulletin of the Saratov University. New episode. Series Chemistry. Biology. Ecology. - 2009. - T. 9. - No. 1. - S. 36-41.
117. Sigida E. N. et al. Comparative characteristics of lipopolysaccharides of bacteria of the Azospirillum strain brasilense Sp7 and its spontaneous mutant Sp7. K2 //News of the Saratov University. New episode. Series Chemistry. Biology. Ecology. - 2012. - T. 12. - No. 1. - S. 61-65.
118. Lagares A. et al. A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa // Journal of bacteriology. - 1992. - T . 174. - no. 18. - S. 5941-5952.
119. Ramos Solano B. et al. Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors //Phytopathology. - 2008. - T . 98. - no. 4. - S. 451-457.
120. Meziane T., Tsuchiya M. Fatty acids as tracers of organic matter in the sediment and food web of a mangrove/intertidal flat ecosystem, Okinawa, Japan // Marine Ecology Progress Series. - 2000. - T. 200. - S. 49-57 .
121. Makhutova O. N., Pryanichnikova E. G., Lebedeva I. M. Comparison of feeding spectra of zebra mussel Dreissen a polymorpha and Dreissena bugensis by biochemical markers // Siberian Ecological Journal. - 2012. - T. 19. - No. 4. - S. 619-631.
122. Kyselová L., Vítová M., Řezanka T. Very long chain fatty acids // Progress in Lipid Research. - 2022. - S. 101180.
123. Volkman JK et al. Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons // Geochimica et cosmochimica acta . - 1980. - T . 44. - no. 8. - S. 1133-1143.
124. Hatamoto M. et al. Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing //Applied and environmental microbiology. - 2007. - T . 73. - no. 13. - S. 4119-4127.
125. Makhutova O. N. et al. Seasonal dynamics of the nutritional spectrum of Dreissena polymorpha in the Rybinsk Reservoir // Reports of the Academy of Sciences. - Federal State Budgetary Institution "Russian Academy of Sciences", 2008. - T. 423. - No. 5. - S. 710-713.
126. Kim MJ et al. Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin -domain triacylglycerol lipase, enhances seed oil accumulations in Jatropha curcas //Biotechnology for biofuels. - 2014. - T . 7. - S. 1-16.
127. LuCL et al. Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana //Plant molecular biology. - 2003. - T . 52. - S. 31-41 .
Published
2023-10-01
How to Cite
Bahranova M.A, Mukhamadiev N.K, Khalilov K.F, Mukhamadiev A.N., & Alikulov B.S. (2023). GC-MS ANALYSIS OF MICROORGANISM MARKERS IN PLANTS (REVIEW). Central Asian Journal of Medical and Natural Science, 4(5), 366-380. https://doi.org/10.17605/cajmns.v4i5.1833
Section
Articles