Biological Bases and Characterization in Oncogenes

  • Tariq Kh. M. Albashr Natural Resources Research Center, Agricultural Researches ,Tikrit University
  • Eman Naji Saleh College of Pure science / University Of Anbar
  • Mustafa Salah Hasan University of Fallujah – college of Veterinary Medicine
  • Fatin Zuher abd AL-Kareem College of Pure science / University Of Anbar
Keywords: Tumours - Oncogenes - Mutants in Tumor Suppressor - miRNA - Cancer treatment

Abstract

Cancer is triggered by various things such as job, toxic chemicals, bacteria, the course of life, epithet geneticism and genetics. In genetics, oncogene, tumor suppressor and miRNA cause cancer. These genes are required to proliferate and separate regular cells, which lead to the abnormal expression in the cells. Modifications in the gene level involve mutation, translocation, rearrangation of DNA in the genes contributing to tumor activation and growth. The oncogenes and tumor suppressor genes are respective paradigms of Ras and p53. Oncogenes' properties include growth factors, receptors of growth factors, signal transducers, and nuclear transcription factors, which are the most popular anti-cancer drugs used to treat oncogene antibodies. MicroRNA has already proven its potential to be utilized in patient prognosis and in detection, which are the following cancer drug research priorities.

References

1. Jemal, A., F. Bray, M.M. Center, J. Ferlay, E. Ward and D. Form an, 2011 . Global cancer statistics. CA: a Cancer Journal for Clinicians.
2. Nandakumar, A., 1990-96. National Cancer Registry Programme, Indian Council of Medical Research, Consolidated report of the population based cancer registries, New Delhi, India.
3. Spandidos, D.A. and M. Anderson, 1989. Oncogenes and Onco-suppressor genes. Their involvement in cancer. J. Pathol., 15°: 1-10.
4. Spandidos, D.A. and N.M. Wilkie, 1984. Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature, 310: 469-4°
5. Armitage, P. and R. Doll, 1954. The age distribution of cancer and a multi-stage theory of carcinogenesis. British J. Cancer, 8: 1-1 2.
6. Foulds, L., 1965. Multiple etiolog ie factors in neoplastic development. Cancer Res., 25: 1339-4°.
7. Spandidos, D.A., 2004. The cancer story. Cancer Biol. Ther., 3: 1184-1186.
8. Spandidos, D.A. and L. Siminovitch, 19° 8. Transfer of the marker for the morphologically transformed phenotype by isolated chromosomes in hamster cells. Nature, 2°1: 259-261.
9. Weinstein, I.B., 1988. The origins of human cancer:Molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment. Cancer Res., 48: 4135-41 43.
10. Spandidos, D.A. and L. Siminovitch, 19°°. Transfer of anchorage independence by isolated metaphase chromosomes in hamster cells. Cell, 12: 6° 5-682.
11. Sourvinos, G., E. Rizos and D.A. Spandidos, 2001 . p53 codon °2 polymorphism is linked to the development and not progression of benign and malignant laryngeal tumours. Oral Oncol., 3°: 5°2-5°8.
12. Macleod, K., 2000. Tumour suppressor genes, Current Opin. Gent. Dev., 10: 81-93.
13. Hickman, E.S., M.C. Moroni and K. Helm, 2002. The role of p53 and pRB in apoptosis and cancer. Curr. Opin. Genet. Dev., 12: 60-66.
14. Vous den, K.H., 2000. p53: Death Star. Cell, 103(5): 691 -4.
15. Calin, G.A., C.D. Dumitru, M. Shimizu, et al., 2002. Frequent deletions and down regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 99: 15524-9.
16. Calin, G.A. and C.M. Croce, 2006. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 6: 85° -66.
17. Calm, G.A., M. Ferracin, A. Cimmino, et al., 2006. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl. J. Med., 353: 1°93-801.
18. Yanaihara, N., N. Caplen, E. Bowman, et al., 2006. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9: 189-98.
19. Yanaihara, N., N. Caplen, E. Bowman, et al., 2006. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9: 189-98.
20. Vogt, P.K., K. Bister, A.L. Bunny, C.M. Croce, W.A. Haseltine, M.J. Hayman, W.S. Hayward, G. Klein, K. Moilirig, R.D. Neth, I.B. Pragnell and J.D. Rowley, 1985. In Leukemia (I. L. Weissman, ed.), pp: 275-292.
21. Vogt, P.K., K. Bister, A.L. Bunny, C.M. Croce, W.A. Haseltine, M.J. Hayman, W.S. Hayward, G. Klein, K. Moilirig, R.D. Neth, I.B. Pragnell and J.D. Rowley, 1985. In Leukemia (I. L. Weissman, ed.), pp: 275-292.
22. Varmus, H.E., 1984. The molecular genetics of cellular on- cogenes. Arinu. Rev. Genet., 18: 553-61 2.
23. Beaupre, D.M. and R. Kurzrock, 1999. RAS and leukemia: from basic mechanisms to genedirected therapy. J. Clin Oncol., 17: 1071 -9.
24. Bishop, J.M., 1991. Molecular themes in oncogenes is. Cell, 44: 235-48.
25. Rodenhuis, S., 1992. Ras And human tumors. Semin Cancer Biol., 3: 241 -7.
Published
2023-08-27
How to Cite
Tariq Kh. M. Albashr, Eman Naji Saleh, Mustafa Salah Hasan, & Fatin Zuher abd AL-Kareem. (2023). Biological Bases and Characterization in Oncogenes. Central Asian Journal of Medical and Natural Science, 4(4), 574-581. Retrieved from https://cajmns.centralasianstudies.org/index.php/CAJMNS/article/view/1753
Section
Articles