Synthesis, Characterization, Antibacterial, and Antioxidant Studies of New Schiff Base Ligands Derivative of 4,4-Methylenedianiline and Their Complexes with Copper Ion

  • Raad Malik Mohammed Department of Chemistry, College of Science, University of Thi-Qar, Thi-Qar, 64001, Iraq
  • Haider A. Mahdi Department of Chemistry, College of Science, University of Thi-Qar, Thi-Qar, 64001, Iraq
Keywords: Schiff base, azomethine, ligand, complex, electrostatic, antioxidant, antibacterial

Abstract

The Schiff bases (L1, L2) were prepared by condensation 4,4-methylenedianiline with aromatic aldehyde. These ligands were further complexed with Cu(II) ion. The compounds have been characterization on the basis their spectra of 1H-NMR, mas, Fourier transform infrared (FTIR), as well as magnetic susceptibillty, elemental analysis (CHN) and conductance measurements. Elemental analysis and spectral data of the ligands were found to be in a good agreement with their structures, indicating high purity of all the compounds. The program of Hyperchem 8 have been used for theoretical accounts using PM3 method to study the electrostatic potential that provided good information about the complexity site. Of the result obtained we can suggest tetrahedral geometry for Cu(ІІ) complexes. The antioxidant activity of the syntheses compounds was evaluated by DPPH scavenger and these were showed a good antioxidant activity. All ligands and their complexes were screened for antibacterial activity, and these compounds showed a good antibacterial activity.

References

1. Hussain, Z., Yousif, E., Ahmed, A., & Altaie, A. (2014). Synthesis and characterization of Schiff's bases of sulfamethoxazole. Organic and medicinal chemistry letters, 4(1), 1-4.‏
2. Subasi, N. T. (2022). Overview of Schiff Bases. In Schiff Base in Organic, Inorganic and Physical Chemistry. IntechOpen.‏
3. Safaei-Ghomi, J., Zahedi, S., & Basharnavaz, H. (2020). Synthesis and Characterization of Ionic Liquid Supported on Fe3O4 Nanoparticles and a DFT Study of 1, 3-Dipolar Cycloaddition for the Synthesis of Isoxazolidines in the Presence of Ionic Liquid-Fe3O4. Polycyclic Aromatic Compounds, 40(3), 574-584.
4. Hussain, Z., Yousif, E., Ahmed, A., & Altaie, A. (2014). Synthesis and characterization of Schiff's bases of sulfamethoxazole. Organic and medicinal chemistry letters, 4(1), 1-4
5. Hania, M. M. (2009). Synthesis of some imines and investigation of their biological activity. E-Journal of Chemistry, 6(3), 629-632.‏
6. Canpolat, E., & Kaya, M. (2005). Studies on mononuclear chelates derived from substituted Schiff Base ligands: Synthesis and characterization of a new 5-methoxysalicyliden-p-aminoacetophenoneoxime and its complexes with Co (II), Ni (II), Cu (II), and Zn (II). Russian Journal of Coordination Chemistry, 31, 790-794
7. Samanta, B., Chakraborty, J., Choudhury, C. R., Dey, S. K., Dey, D. K., Batten, S. R., ... & Mitra, S. (2007). New Cu (II) complexes with polydentate chelating Schiff base ligands: Synthesis, structures, characterisations and biochemical activity studies. Structural Chemistry, 18, 33-41
8. Afkhami, A., Bagheri, H., Khoshsafar, H., Saber-Tehrani, M., Tabatabaee, M., & Shirzadmehr, A. (2012). Simultaneous trace-levels determination of Hg (II) and Pb (II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. Analytica chimica acta, 746, 98-106.
9. Rout, K., Manna, A. K., Sahu, M., & Patra, G. K. (2019). A guanidine based bis Schiff base chemosensor for colorimetric detection of Hg (II) and fluorescent detection of Zn (II) ions. Inorganica Chimica Acta, 486, 733-741.‏
10. Das, M., Biswas, A., Kundu, B. K., Mobin, S. M., Udayabhanu, G., & Mukhopadhyay, S. (2017). Targeted synthesis of cadmium (II) Schiff base complexes towards corrosion inhibition on mild steel. RSC advances, 7(77), 48569-48585.
11. Formica, M., Fusi, V., Giorgi, L., & Micheloni, M. (2012). New fluorescent chemosensors for metal ions in solution. Coordination Chemistry Reviews, 256(1-2), 170-192.‏
12. Trujillo, A., Fuentealba, M., Carrillo, D., Manzur, C., Ledoux-Rak, I., Hamon, J. R., & Saillard, J. Y. (2010). Synthesis, spectral, structural, second-order nonlinear optical properties and theoretical studies on new organometallic donor− acceptor substituted nickel (II) and Copper (II) unsymmetrical Schiff-base complexes. Inorganic chemistry, 49(6), 2750-2764.
13. He, S. X., Yu, H. H., Huang, C., Chen, D. M., & Zhu, B. X. (2023). Metallomacrocycle or 1D chain: Synthesis, structures, and antifungal activities of zinc (II) and silver (I) complexes based on two reduced Schiff base ligands. Journal of Molecular Structure, 1271,136073.‏
14. Dong, Y., Li, M., Hao, Y., Feng, Y., Ren, Y., & Ma, H. (2023). Antifungal Activity, Structure‐Activity Relationship and Molecular Docking Studies of 1, 2, 4‐Triazole Schiff Base Derivatives. Chemistry & Biodiversity, 20(3), e202201107.
15. Devi, P., Singh, K., & Kubavat, B. (2023). Synthesis, spectroscopic, quantum, thermal and kinetics, antibacterial and antifungal studies: Novel Schiff base 5-methyl-3-((5-bromosalicylidene) amino)-pyrazole and its transition metal complexes. Results in Chemistry, 5, 100813.‏
16. Ma, B., Tan, W., Zhang, J., Mi, Y., Miao, Q., & Guo, Z. (2023). Preparation and characterization of chitosan derivatives bearing imidazole ring with antioxidant, antibacterial, and antifungal activities. Starch‐Stärke, 75(3-4), 2200204.‏
17. Tople, M. S., Patel, N. B., Patel, P. P., Purohit, A. C., Ahmad, I., & Patel, H. (2023). An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-chloroquinoline based Schiff-bases. Journal of Molecular Structure, 1271, 134016.‏
18. Aytac, S., Gundogdu, O., Bingol, Z., & Gulcin, İ. (2023). Synthesis of Schiff Bases Containing Phenol Rings and Investigation of Their Antioxidant Capacity, Anticholinesterase, Butyrylcholinesterase, and Carbonic Anhydrase Inhibition Properties. Pharmaceutics, 15(3), 779.‏
19. Gueye, M. N., Dieng, M., Thiam, I. E., Lo, D., Barry, A. H., Gaye, M., & Retailleau, P. (2017). Lanthanide (III) complexes with tridentate Schiff base ligand, antioxidant activity and X-ray crystal structures of the Nd (III) and Sm (III) complexes. South African Journal of Chemistry, 70, 8-15.‏
20. Hosny, S., Ragab, M. S., & Abd El-Baki, R. F. (2023). Synthesis of a new sulfadimidine Schiff base and their nano complexes as potential anti-COVID-19 and anti-cancer activity. Scientific Reports, 13(1), 1502.‏
21. Abdel-Rahman, L. H., Abdelghani, A. A., AlObaid, A. A., El-ezz, D. A., Warad, I., Shehata, M. R., & Abdalla, E. M. (2023). Novel Bromo and methoxy substituted Schiff base complexes of Mn (II), Fe (III), and Cr (III) for anticancer, antimicrobial, docking, and ADMET studies. Scientific reports, 13(1), 3199.
22. Mostafa, M. A., Ismail, M. M., Morsy, J. M., Hassanin, H. M., & Abdelrazek, M. M. (2023). Synthesis, characterization, anticancer, and antioxidant activities of chitosan Schiff bases bearing quinolinone or pyranoquinolinone and their silver nanoparticles derivatives. Polymer Bulletin, 80(4), 4035-4059.‏
23. Alorini, T., Daoud, I., Al-Hakimi, A. N., Alminderej, F., & Albadri, A. E. (2023). An experimental and theoretical investigation of antimicrobial and anticancer properties of some new Schiff base complexes. Research on Chemical Intermediates, 49(4), 1701-1730.‏
24. Talebi, A., Salehi, M., Khaleghian, A., & Kubicki, M. (2023). Evaluation of anticancer activities, apoptosis, molecular docking, and antioxidant studies of new Ni (II), VO (IV), Cu (II) and Co (III) Schiff base complexes. Inorganica Chimica Acta, 546, 121296.‏
25. Kaushik, S., Paliwal, S. K., Iyer, M. R., & Patil, V. M. (2023). Promising Schiff bases in antiviral drug design and discovery. Medicinal Chemistry Research, 32, pages 1063–1076.‏
26. Al-Wahaibi, L. H., El-Sheref, E. M., Hammouda, M. M., & Youssif, B. G. (2023). One-Pot Synthesis of 1-Thia-4-azaspiro [4.4/5] alkan-3-ones via Schiff Base: Design, Synthesis, and Apoptotic Antiproliferative Properties of Dual EGFR/BRAFV600E Inhibitors. Pharmaceuticals, 16(3), 467
27. El-Lateef, A., Hany, M., Elbastawesy, M. A., Abdelghani Ibrahim, T. M., Khalaf, M. M., Gouda, M., ... & Morcoss, M. M. (2023). Design, Synthesis, Docking Study, and Antiproliferative Evaluation of Novel Schiff Base–Benzimidazole Hybrids with VEGFR-2 Inhibitory Activity. Molecules, 28(2), 481.‏
28. Alyamani, N. M. (2023). New Schiff Base–TMB Hybrids: Design, Synthesis and Antiproliferative Investigation as Potential Anticancer Agents. Symmetry, 15(3), 609.‏
29. Kumar, B., Devi, J., & Manuja, A. (2023). Synthesis, structure elucidation, antioxidant, antimicrobial, anti-inflammatory and molecular docking studies of transition metal (II) complexes derived from heterocyclic Schiff base ligands. Research on Chemical Intermediates, 49(6), 2455-2493.‏
30. Başaran, E. (2023). Schiff Base Derivatives Based on Ampyrone as Promising Acetylcholinesterase Inhibitors: Synthesis, Spectral Characterization, Biological Activity, and SwissADME Predictions. Russian Journal of Bioorganic Chemistry, 49(1), 114-126.‏
31. Nasrin, D., Alam, M. A., Rahman, I. M. M., Banu, H., & Nazimuddin, M. (2013). Synthesis, characterization and antimicrobial activity of some metal complexes with schiff base containging O, N and S as the donor atoms. International Journal of Applied and Natural Sciences, 2(1), 1-8.‏
32. Kailas, K. H., Sheetal, J. P., Anita, P. P., & Apoorva, H. P., “Four synthesis methods of schiff base ligands and preparation of their metal complex with Ir and antimicrobial investigation”, World Journal of Pharmacy and Pharmaceutical Sciences, 5(2), 1055-1063, 2016.
33. Al-Shboul, T.M.A.; El-khateeb, M.; Obeidat, Z.H.; Ababneh, T.S.; Al-Tarawneh, S.S.; Al Zoubi, M.S.; Alshaer,W.; Abu Seni, A.; Qasem, T.; Moriyama, H.(2022).“Synthesis, Characterization, Computational and Biological Activity of Some Schiff Bases and Their Fe, Cu and Zn Complexes”, Inorganics, 10, 112.
34. Yusuf, T.L., Oladipo, S.D., Zamisa, S., Kumalo, H.M., Lawal, I.A., Lawal, M.M., Mabuba, N.(2021). “Design of New Schiff-Base Copper(II) Complexes: Synthesis, Crystal Structures, DFT Study, and Binding Potency toward Cytochrome P450 3A4”, ACS Omega, 6, 13704–13718.
35. Vhanale, B., Digambar Kadam, D. & Shinde, A.,(2022). “Synthesis, spectral studies, antioxidant and antibacterial evaluation of aromatic nitro and halogenated tetradentate Schiff bases”, Heliyon., 8, 09650.
36. Mekky, A. H., Sayer, A. H., & Abed, H. J. (2019). SYNTHESIS, ANTIOXIDANT ACTIVITY OF SOME NOVEL SCHIFF BASE DERIVED FROM ETHYL 4-AMINOBENZOATE. Biochemical & Cellular Archives, 19(1).
37. Mekky, A. H., Mohammad, Z. A. A. & Auribi, S. M.(2012). Synthesis and biological activity of monocyclic Spiro Azetidine-2-one, J. Educ. Pure Sci Thi-Qar ,2(1), 67-74.
38. Murray, J. S., & Politzer, P. (2011). The electrostatic potential: an overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(2), 153-163.‏
Published
2023-08-10
How to Cite
Raad Malik Mohammed, & Haider A. Mahdi. (2023). Synthesis, Characterization, Antibacterial, and Antioxidant Studies of New Schiff Base Ligands Derivative of 4,4-Methylenedianiline and Their Complexes with Copper Ion. Central Asian Journal of Medical and Natural Science, 4(4), 366-378. Retrieved from https://cajmns.centralasianstudies.org/index.php/CAJMNS/article/view/1708
Section
Articles