Main Article Content

Abstract





Background: Urinary tract infections (UTIs) are a serious health problem that affects millions of people each year. Urinary tract infections are the second most common type of infection in the body. One of the causes of infection in the urinary tract is caused by microorganisms such as Pseudomonas aeruginosa. The pathogenic potential was proved by their frequent isolation from clinical samples and association with diseases. from various clinical samples and perform antimicrobial susceptibility testing (AST) by Vitek.


Methodology: This study was conducted to investigate the prevalence of antibiotic resistance among Pseudomonas aeruginosa bacteria isolated from the urine of patients Suffering from UTI in Karbala governorate.


(100) isolated samples of Pseudomonas aeruginosa were isolated from the urine of UTI patients with ages ranging from 5 to 65 years for both sexes and the samples were diagnosed based on a number of biochemical tests and sensitivity test using VITEK 2 system technology.


Results: In this study, it was found that 100 Pseudomonas aeruginosa bacterial isolate (75% female and 25% male) of patients with urinary tract infection, Pseudomonas aeruginosa showed a high resistance to antibiotics. The study also showed that the percentage of adult females with urinary tract infection due to Pseudomonas aeruginosa is higher than males, reaching 75%.


The most effective antimicrobial against Pseudomonas aeruginosa were ( colistin sulphate and gentamicin). While a high resistance rate towards the antibiotics ( Ceftazidime , ciprofloxacin , levofloxacin , amikacin , Tetracycline , Imipenem , Meropenem , Trimethoprim , Piperacillin).






Conclusion: It was concluded that Pseudomonas aeruginosa, which was increase resistant rate to antibiotics and this is observed through this study against antipseudomonal drugs indicates the need to develop targeted approaches to help control antimicrobial resistance.

Keywords

Urinary tract infections Pseudomonas aeruginosa Virulence factors VITEK 2

Article Details

How to Cite
Hussain , M. A. A. A. A., Abdullah, E. D., Shakir, D. A., Ghaleb, N. A., Abdel-Hussein, Z. R., Hussein , Z. A. A., & Saeed, D. E. (2023). Study of Some Bacteriological Parameter on Pseudomonas Aeruginosa Isolated from Patients with UTI. Central Asian Journal of Medical and Natural Science, 4(3), 237-246. https://doi.org/10.17605/cajmns.v4i3.1517

References

  1. 1. Chang SL, Shortliffe LD. Pediatric urinary tract infections. Pediatr Clin North Am 2006;53:379—400.
  2. 2. Kucheria R, Dasgupta P, Sacks SH, Khan MS, Sheerin NS. Urinary tract infections: new insights into a common problem. Postgrad Med J 2005;81:83—6.
  3. 3. Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon 2003;49:53—70.
  4. 4. Stamm WE, Hooton TM. Management of urinary tract infections in adults. N Engl J Med 1993;329:1328—34.
  5. 5. Litwin MS, Saigal CS, Yano EM, Avila C, Geschwind SA, Hanley JM, et al. Urologic Diseases in America Project: analytical methods and principal findings. J Urol 2005;173:933—7.
  6. 6. Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother 1992;29:19—24.
  7. 7. Kunin C. Detection, prevention and management of urinary tract infections. Philadelphia: Lea and Febiger; 1987.
  8. 8. Williams DH, Schaeffer AJ. Current concepts in urinary tract infections. Minerva Urol Nefrol 2004;56:15—31.
  9. 9. Mittal R, Chhibber S, Sharma S, Harjai K. Macrophage inflammatory protein-2, neutrophil recruitment and bacterial persistence in an experimental mouse model of urinary tract infection. Microbes Infect 2004;6:1326—32.
  10. 10. Nicolle LE. Uncomplicated urinary tract infection in adults including uncomplicated pyelonephritis. Urol Clin North Am 2008;35:1—12.
  11. 11. Bonadio M, Meini M, Gigli C, Longo B, Vigna A. Urinary tract infection in diabetic patients. Urol Int 1999;63:215—9.
  12. 12. Geerlings SE, Meiland R, van Lith EC, Brouwer EC, Gaastra W, Hoepelman AIM. Adherence of type I-fimbriated Escherichia coli to uroepithelial cells. Diabetes Care 2002;25:1405—9.
  13. 13. Leone M, Albanese J, Garnier F, Sapin C, Barrau K, Bimar MC, et al. Risk factors of nosocomial catheter-associated urinary tract infection in a polyvalent intensive care unit. Int Care Med 2003;29:929—32.
  14. 14. Munoz JA, Perez-Esteban B, Esteban M, de la Escalera S, Gomez MA, Martinez-Toledo MV, et al. Growth of moderately halophilic bacteria isolated from sea water using phenol as the sole carbon source. Folia Microbiol (Praha) 2001;46:297—302.
  15. 15. Read RR, Eberwein P, Dasgupta MK, Grant SK, Lam K, Nickel JC, et al. Peritonitis in peritoneal dialysis: Bacterial colonization by biofilm spread along the catheter. Kid Int 1988;35:614—21.
  16. 16. Warren JW, Tenney JH, Hoopes JM, Muncie HL, Anthony WC. A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 1982;146:719—23.
  17. 17. Bass 3rd PF, Jarvis JA, Mitchell CK. Urinary tract infections. Prim Care 2003;30:41—61.
  18. 18. Reid G. Current scientific understanding of urinary tract infections in women: an overview. World J Urol 1999;17:336—8
  19. 19. Saint S, Chenoweth CE. Biofilms and catheter-associated urinary tract infections. Infect Dis Clin North Am 2003;17:411—32.
  20. 20. Shaw GM, Iovannisci DM, Yang W, Finnell RH, Carmichael SL, Cheng S, et al. Endothelial nitric oxide synthase (NOS3) genetic variants, maternal smoking, vitamin use, and risk of human orofacial clefts. Am J Epidemiol 2005;162:1207—14.
  21. 21. Kalsi J, Arya M, Wilson P, Mundy A. Hospital-acquired urinary tract infection. Int J Clin Pract 2003;57:388—91.
  22. 22. Logan K. Indwelling catheters: developing an integrated care pathway package. Nurs Times 2003;99:49—51.
  23. 23. Dickinson GM, Bisno AL. Infections associated with indwelling devices: infections related to extravascular device. Antimicrob Agents Chemother 1989;33:602—7.
  24. 24. Chang SC, Chen YC, Hsu LY. Epidemiologic study of pathogens causing nosocomial infections. J Formos Med Assoc 1990;89:1023—30.
  25. 25. Fluit AC, Schmitz FJ, Verhoef J. Frequency of isolation of pathogens from bloodstream, nosocomial pneumonia, skin and soft tissue, and urinary tract infections occurring in European patients. Eur J Clin Microbiol Infect Dis 2001;20:188—91.
  26. 26. Hootan TM. Recurrent urinary tract infection in women. Int J Antimicrob Agents 2001;17:259—68.
  27. 27. Johnson JR, Berggren T, Manivel JC. Histopathologic— microbiologic correlates of invasiveness in a mouse model of ascending unobstructed urinary tract infection. J Infect Dis 1992;165:299—305.
  28. 28. Matheson NR, Potempa J, Travis J. Interaction of a novel form of Pseudomonas aeruginosa alkaline protease (aeruginolysin) with interleukin-6 and interleukin-8. Biol Chem 2006;387:911—5.
  29. 29. Yates SP, Jorgensen R, Andersen GR, Merrill AR. Stealth and mimicry by deadly bacterial toxins. Trends Biochem 2006;31:123—33.
  30. 30. Zulianello L, Canard C, Kohler T, Caille D, Lacroix JS, Meda P. Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 2006;74:3134—47.
  31. 31. Veesenmeyer JL, Hauser AR, Lisboa T, Rello J. Pseudomonas aeruginosa virulence and therapy: evolving translational strategies. Crit Care Med 2009;37:1777—86.
  32. 32. Lysczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000;2:1051—60.
  33. 33. Smith DC, Spooner RA, Watson PD, Murray JL, Hodge TW, Amessou M, et al. Internalized Pseudomonas exotoxin A can exploit multiple pathways to reach the endoplasmic reticulum. Traffic 2006;7:379—93.
  34. 34. Vance RE, Rietsch A, Mekalanos JJ. Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect Immun 2005;73:1706—13.
  35. 35. Woods DE, Lam JS, Parenchych W, Speet DP, Campbell M, Godfrey AJ. Correlation of virulence factors from clinical and environmental isolates with pathogenicity in the neutropenic mouse model. Can J Microbiol 1997;43: 541—51.
  36. 36. Woods DE, Schaffer MS, Rabin HR, Campbell GD, Sokol PA. Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites. J Clin Microbiol 1986;24:260—4. [37] Hamood AN, Griswold JA, Duhan CM. Production of extracellular virulence factors by Pseudomonas aeruginosa isolates obtained from tracheal, urinary tract, and wound infections. J Surg Res 1996;61:425—32.
  37. 37. Prudhivi Sumana, Sunita Toleti and Ramesh Babu Myneni. 2017. Prevalence of nonfermenting gram negative bacilli infections and their antimicrobial susceptibility pattern in a tertiary care. International Journal of Current Research., 9(12): 63427-63431
  38. 38. E. Tacconelli et al., “Global Priority List Of Antibiotic-Resistant Bacteria To Guide Research, Discovery And Development Of New Antibiotics,” World Heal. Organ., 2017.
  39. 39. D. van Duin and R. A. Bonomo, “Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations,” Clin. Infect. Dis., vol. 63, no. 2, pp. 234–241, 2016.
  40. 40. G. Haidar et al., “Ceftolozane-Tazobactam for the Treatment of MultidrugResistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance,” Clin. Infect. Dis., 2017.
  41. 41. M. Bassetti, A. Vena, A. Russo, A. Croxatto, T. Calandra, and B. Guery, “Rational approach in the management of Pseudomonas aeruginosa infections,” Current Opinion in Infectious Diseases. 2018.
  42. 42. H. Wright, R. A. Bonomo, and D. L. Paterson, “New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn?,” Clinical Microbiology and Infection. 2017.
  43. 43. Joda, M. (2008). The progressive statistical analysis by using SPSS . 1st ed . Walse house editions , Amman Jordan.
  44. 44. Al Johani SM, Akhter J, Balkhy H, El-Saed A, Younan M, Memish Z. Prevalence of antimicrobial resistance among gram-negative isolates in an adult intensive care unit at a tertiary care center in Saudi Arabia. Ann Saudi Med 2010;30(5):364–9
  45. 45. J. Moreno, E. Conte, Tribaldos, et al. Antibiotic Resistance Profiles in Panama: Trends from 2007 to 2013. Pharm Pharmacol Int J, 6 (2018), pp. 350-355
  46. 46. NguyenL, GarciaJ, GruenbergK, etal.Multidrug Resistant Pseudomonasaeruginosa Infections: HardtoTreat, But Hopeonthe Horizon? CurrInfect Dis Rep.2018;20:23, http://dx.doi.org/10.1007/s11908-018-0629-6.
  47. 47. Héctor Sambranod, Julio César Castilloa, b, Carlos W.Ramosa, Brendade Mayorgac, Olga Chena, Ovidio Durána, Carmelo Ciniglioa, Criseida Aguilara, Osvaldo Cisternae, Magalyde Chia. Prevalence of antibiotic resistance and virulent factors in nosocomial clinical isolates of Pseudomonasaeruginosa from Panamá braz j infect dis. 2021; 25(1):101038