Promising Single Molecules for Laser Active Medium
Abstract
We provide a brief overview of recent calculations and predictions of electronic properties for single-molecules and discuss some principles underpinning strategies for enhancing their electronic performance. Quantum interference effects in the electronic properties of (Pyridine-2Cyclopentene Metallic) organometallic-type molecules possessing six aromatic rings were investigate theoretically. In this paper, electronic transmission properties were study for different types of organometallic molecules. A calculation also provides a powerful tool to estimate the electrical and electronic properties. Furthermore, to probe the electronic structure of all compounds in this study we compute the UV-visible, isosurface and energies calculations. It is finding that the (HOMO and LUMO) energy changing with replace metallic atoms as well as the energy gap changes as the metal different. Therefore, this indicates the energies depend on the type of the metallic atoms in the studied molecules. All calculations were performed using density functional theory at three parameters with the Lee-Yang-Parr functional (B3 LYP) levels with SDD basis sets.
References
2. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M., 1997, “Conductance of a molecular junction” Science 278, 252–254.
3. Di Ventra, M., Pantelides, S. T. & Lang, N. D., 2000, “First-principles calculation of transport properties of a molecular device”, Phys. Rev. Lett. 84, 979–982.
4. Smit, R. H. M. et al., 2000, “Measurement of the conductance of a hydrogen molecule”, Nature 419, 906–909.
5. Ismael, D., et al., 2011, “Controlling single-molecule conductance through lateral coupling of p orbitals”, Nat. Nanotech. 6, 226-231.
6. Thomas, H., et al., 2010; “Transition from Tunnelling to Hopping in Single Molecular Junctions by Measuring Length and Temperature Dependence”, J. AM. Chem. Soc. 132, 11658-11664.
7. Venkataraman L., et al., 2006, “Dependence of single-molecule junction conductance on molecular conformation”, Nature, 442, 904-907.
8. Yamada, R., et al., 2008, “Electrical Conductance of Oligothiophene Molecular Wires”, Nano Lett. 8, 1237-1240.
9. Changsheng, W. et al., 2009, “Oligoyne Single Molecule Wires”, J. AM. Chem. Soc. 131, 15647–15654.
10. Artem, M., et al., 2010, “Influence of Conformation on Conductance of Biphenyl-Dithiol Single-Molecule Contacts”, Nano Lett. 10, 156-163.
11. Artem M., et al., 2010; “Single-Molecule Junctions Based on Nitrile-Terminated Biphenyls: A Promising New Anchoring Group”, J. AM. Chem. Soc. 133, 184-187.
12. Christopher, M., et al., 2008, “Conformation dependence of molecular conductance: chemistry versus geometry”, J. Phys.: Condens. Matter, 20, 1-5.
13. D.R. Kauffman, D.C. Sorescu, D.P. Schofield, B.L. Allen, K.D. Jordan, A. Star Understanding the Sensor Response of Metal-Decorated Carbon Nanotubes ,Nano Lett. 2010, 10, 958.
14. J.C. Ellenbogen, J.C. Love Architectures for molecular electronic computers. I. Logic structures and an adder designed from molecular electronic diodes,Proc. IEEE 2000, 88, 386.
15. W. A. Chalifoux, R. R. Tykwinski, C. R. Chim. Synthesis of extended polyynes: Toward carbyne,2009, 12, 341– 358.5.
16. P. Moreno-Garcia, M. Gulcur, D. Z. Manrique, T. Pope, W. Hong, V. Kaliginedi, C. Huang, A. S. Batsanov, M. R. Bryce, C. Lambert and T. Wandlowski Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution , J. Am. Chem. Soc., 2013, 135, 12228-12240.
17. Moore, G.E., Cramming more components onto integrated circuits.1965,McGraw-Hill.
18. Geim, A., Novoselov, K. The rise of graphene. Nature Mater. 2007, 6(3), 183–191.
19. A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, R. R Tykwinski .The surprising nonlinear optical properties of conjugated polyyne oligomers, J. Chem.Phys. 2004, 120, 6807 – 6810.
20. C. Wang, A. S. Batsanov, M. R. Bryce, S. Martin, R. J. Nichols, S. J. Higgins, V. M. Garcia-Suarez and C. J. Lambert Oligoyne single molecule wires, J. Am. Chem. Soc., 2009, 131, 15647-15654.
21. Aradhya, S. V. et al. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 12, 1643–1647(2012).
22. Arroyo, C. R. et al. Signatures of quantum interference effects on charge transport through a single benzene ring. Angew. Chem. Int. Ed. 52, 3152–3155 (2013).
23. Meisner, J. S. et al. Importance of direct metal p coupling in electronic transport through conjugated single-molecule junctions. J. Am. Chem. Soc. 134, 20440–20445 (2012).
24. Arroyo, C. R. et al. Quantum interference effects at room temperature in OPV-based single-molecule junctions. Nanoscale Res. Lett. 8, 1–6 (2013).
25. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).
26. Ke, S.-H., Yang, W. & Baranger, H. U. Quantum-interference-controlled molecular electronics. Nano Lett. 8, 3257–3261 (2008).
27. 0. Markussen, T., Stadler, R. & Thygesen, K. S. The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265(2010).
28. Arroyo, C. R. et al. Signatures of quantum interference effects on charge transport through a single benzene ring. Angew. Chem. Int. Ed. 52, 3152–3155 (2013).
29. Hansen, T., Solomon, G. C., Andrews, D. Q. & Ratner, M. A. Interfering pathways in benzene: an analytical treatment. J. Chem. Phys. 131, 194704 (2009).
30. Solomon, G. C. et al. Understanding quantum interference in coherent molecular conduction. J. Chem. Phys. 129, 054701 (2008).
31. F. Diederich Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds ,Nature 1994, 369, 199 –207.
32. W. A. Chalifoux, R. R. Tykwinski, C. R. Chim. Synthesis of extended polyynes: Toward carbyne,2009, 12, 341– 358.5.
33. P. Moreno-Garcia, M. Gulcur, D. Z. Manrique, T. Pope, W. Hong, V. Kaliginedi, C. Huang, A. S. Batsanov, M. R. Bryce, C. Lambert and T. Wandlowski Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution , J. Am. Chem. Soc., 2013, 135, 12228-12240.
34. Huber, R.; Gonza´lez, M. T.; Wu, S.; Langer, M.; Grunder, S.; Horhoiu, V.; Mayor, M.; Bryce, M. R.; Wang, C.; Jitchati, R.; Scho¨nenberger, C.; Calame, MElectronic properties of linear carbon chains: Resolving the controversy. J. Am. Chem. Soc. 2008, 130, 1080–1084.
35. Salomon, A.; Cahen, D.; Lindsay, S.; TomfohEnhanced Conduction through Isocyanide Terminal Groups in Alkane and Biphenylene Molecules Measured in Molecule/Nanoparticle/Molecule Junctionsr, J.; Engelkes, V. B.; Frisbie, C. D. AdV. Mater. 2003, 15, 1881–1890.
36. Pauly, F.; Viljas, J. K.; Cuevas, J. C.; Scho¨n, G. Density-functional study of tilt-angle and temperature-dependent conductance in biphenyl dithiol single-molecule junctions Phys. ReV. B 2008, 77, 155312.
37. Moore, G.E., Cramming more components onto integrated circuits. 1965,McGraw-Hill.
38. Tour, J.M., Molecular electronics. Synthesis and testing of components. Accounts of Chemical Research, 2000. 33(11): p.791-804.
39. Aviram, A. and M.A. Ratner, Molecular rectifiers. Chemical Physics Letters, 1974. 29(2): p. 277-283.
40. Xu, B. and N.J. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions. Science, 2003. 301(5637): p. 1221-1223.
41. Geim, A., Novoselov, K. The rise of graphene. Nature Mater. 2007, 6(3), 183–191.
42. D.R. Kauffman, D.C. Sorescu, D.P. Schofield, B.L. Allen, K.D. Jordan, A. Star Understanding the Sensor Response of Metal-Decorated Carbon Nanotubes ,Nano Lett. 2010, 10, 958.
43. J.C. Ellenbogen, J.C. Love Architectures for molecular electronic computers. I. Logic structures and an adder designed from molecular electronic diodes,Proc. IEEE 2000, 88, 386.
44. F. Diederich Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds ,Nature 1994, 369, 199 –207.
45. W. A. Chalifoux, R. R. Tykwinski, C. R. Chim. Synthesis of extended polyynes: Toward carbyne,2009, 12, 341– 358.5.
46. J. Cornil, D. Beljonne, J. P. Calbert, J. L. Bredas Interchain Interactions in Organic π‐Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport, Adv. Mater. 2001,13, 1053 –1067.
47. A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, R. R Tykwinski .The surprising nonlinear optical properties of conjugated polyyne oligomers, J. Chem.Phys. 2004, 120, 6807 – 6810.
48. Z. Crljen and G. Baranovic Unusual Conductance of Polyyne- zBased Molecular Wires, Phys. Rev. Lett., 2007, 98, 116801.
49. C. Wang, A. S. Batsanov, M. R. Bryce, S. Martin, R. J. Nichols, S. J. Higgins, V. M. Garcia-Suarez and C. J. Lambert Oligoyne single molecule wires, J. Am. Chem. Soc., 2009, 131, 15647-15654.