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GC-MS ANALYSIS OF MICROORGANISM MARKERS IN PLANTS 

(REVIEW) 
 

            Relevance: 

Plants are known to contain a wide range of microorganisms, including bacteria, fungi, and 

viruses, which can have both positive and negative effects on plant health [1-3]. The identification and 

characterization of these microorganisms is critical to understanding their role in plant-microbial 

interactions. GC-MS, with its high sensitivity and the ability to obtain detailed chemical information, 

has become a valuable tool in this field. In this regard, for completeness of information, it is necessary 

to consider the following sections: 

Principles of GC-MS. GC/MS principles include the following [4-8]: 

1. Separation of a mixture of components: GC-MS is based on the separation of a 

mixture of analytes into individual components using gas chromatography . This is achieved due to the 

different affinities of the components for the stationary phase (stationary column) and the mobile 

phase (mobile gas). 
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ABSTRACT  The presence of microorganisms in 

plants can have a significant impact on their 

growth, development and general health. 

Traditional methods for identifying and 

characterizing these microorganisms can be time 

consuming and often lack specificity. In recent 

years, gas chromatography-mass spectrometry 

(GC-MS) has become a powerful method for the 

analysis of microorganism markers in plants. This 

review article presents the principles and 

applications of GC-MS in the analysis of 

microorganism markers, indicating its advantages 

and limitations. In addition, it discusses various 

case studies in which GC-MS has been successfully 

used to detect and identify microorganisms in 

plants, paving the way for improved plant disease 

control strategies. 
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2. Ionization of the components: After the separation of the components, they are 

ionized, which allows them to turn into ions. Various methods are used for this, such as electron 

ionization (EI), chemical ionization (CI) or electronic shielding (EI). 

3. Mass analysis ionized components: The ionized components pass through a mass 

analyzer, which separates the ionized particles by mass and charge. Typically, GC/MS uses mass 

filters such as a quadrupole or time line device (TOF). 

4. Detection and registration of ions: Ions are registered by a detector and further 

processed using a mass spectrometer. This allows you to determine the mass and relative content of 

each component in the sample. 

5. Component Identification: To identify components, mass spectrum databases are 

used, which contain information on the mass spectra of various substances. By comparing the resulting 

mass spectrum with databases, the structure can be determined and analytes identified. 

These principles form the basis of GC-MS analysis and allow high accuracy and sensitivity in 

the determination of components in various samples. 

Microorganism markers in plants. This section discusses the different types of 

microorganism markers that can be analyzed using GC/MS. It covers volatile organic compounds 

(VOCs), non-volatile metabolites, fatty acids, and other biomarkers that can serve as indicators of the 

presence of microbes in plants. 

Sample preparation methods in GC-MS. 

Sample preparation methods in gas chromatography -mass spectrometry (GC-MS) may vary 

depending on the type of sample being analyzed and the information required. 

The following are some of the main methods for sample preparation in GC/MS: 

 Extraction: This method is used to extract analytes from the sample matrix. For this, 

various solvents are used, such as acetonitrile , chloroform, diethyl ether, etc. The extraction process 

can be carried out using ultrasonic treatment or cold irrigation. 

 Evaporation: In this method, the sample is subjected to heat treatment to concentrate 

the analytes. Heating can be carried out in a water bath, steam bath, vacuum film evaporator or other 

special devices. 

 Direct Injection: This method involves directly injecting the sample into the GC/MS 

for analysis. The sample, usually dissolved in a solvent, is injected through the apparatus into the gas 

chromatograph column . 

 Derivatives: Sometimes analytes can be chemically modified to improve their stability 

or detectability . Some common derivative methods include derivatization amine o - or carbonyl 

groups, the conversion of alkanes into gasoline or aromatic compounds, and others. 

 Fractionation: This method is used when the sample contains many analytes with 

different physicochemical properties. In such cases, the sample may be fractionated based on various 

filtration, extraction or chromatography techniques. 

The choice of the appropriate GC/MS sample preparation method depends on the purpose of 

the analysis, the type of sample and its matrix, and the capabilities and limitations of the GC/MS 

setup. It is important to take into account the specific requirements of each assay and tailor sample 

preparation methods to meet these requirements. 

Application of GC-MS in the analysis of microorganisms. This section provides a 

comprehensive overview of the use of GC-MS in the analysis of microorganism markers in plants. It 

discusses case studies where GC-MS has been successfully used to detect and identify specific micro-

organisms such as fungal pathogens, bacterial endophytes , and viral infections. In addition, it 

highlights the use of GC-MS to study plant-microbial interactions and the role of micro-organisms in 

plant diseases. 
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The importance of GC-MS in the analysis of microbial markers in plants cannot be 

overestimated. Its ability to provide detailed chemical information about the metabolites of 

microorganisms provides valuable insight into the complex relationships between plants and 

microorganisms. Using the power of GC/MS, researchers can unravel the mysteries of plant-microbial 

interactions, leading to the development of sustainable and effective strategies to protect plant health 

in the face of microbial challenges. 

Microorganisms can leave various markers or signatures that can be used for their detection 

and identification [9-12]. Here are some commonly studied microorganism markers (Table 1): 

Microorganism markers 

 Volatile organic compounds 

 Fatty acid 

 Metabolites 

 Cell wall components 

 Nucleic acids 

 Proteins and enzymes 

 Biomolecules and metabolic pathways 

 

1. Volatile Organic Compounds (VOC): Microorganisms can produce a wide range of 

volatile compounds that can serve as markers. These include, among others, alcohols, aldehydes, 

ketones, esters and sulfur compounds. VOCs are often responsible for characteristic odors associated 

with microbial growth [13–16]. 

2. Fatty acids: The fatty acid composition of microorganisms may vary by species and strain. 

Fatty acid profiles can be used as markers for the identification and classification of microorganisms 

[17-21]. 

3. Metabolites: Microorganisms produce specific metabolites during their metabolic activity. 

These metabolites, such as secondary metabolites, can serve as markers of microbial presence and 

activity [22–25]. Examples include antibiotics, mycotoxins and pigments. 

4. Cell wall components: The composition and structure of cell wall components can vary 

between microorganisms, providing characteristic markers for their identification [26-29]. For 

example, peptidoglycan is a major component of bacterial cell walls. 

5. Nucleic acids: The genetic material of microorganisms, such as DNA and RNA, can serve 

as a marker for their detection and identification. Certain gene sequences or regions can be targeted 

using molecular techniques such as polymerase chain reaction (PCR) for microbial identification [30–

34]. 

6. Proteins and enzymes. Microorganisms express unique proteins and enzymes that can act 

as markers. These markers can be targeted using immunological methods such as enzyme-linked 

immunosorbent assay (ELISA) to detect and identify microorganisms [35-38]. 

7. Biomolecules and metabolic pathways. Microorganisms have different metabolic pathways 

and produce specific biomolecules . They may include amino acids, sugars, organic acids, and 

enzymes that can be used as markers for the presence and activity of microbes. 

It is important to note that microorganism markers may vary depending on the specific species, 

strain, and environmental conditions. Researchers often use a combination of markers and analytical 

methods such as gas chromatography-mass spectrometry (GC-MS) to achieve accurate and reliable 

identification and characterization of microorganisms in a variety of samples. 

Fatty acids are commonly used as markers for the identification and classification of 

microorganisms. The composition and relative amount of fatty acids can vary among different species 

and strains of microbes, making them useful for distinguishing microorganisms. Here are some 

examples of fatty acids that act as microbial markers (Table 2): 

Fatty acid markers 
 Branched-chain fatty acids (BCFAs) 

 Monounsaturated fatty acids (MUFAs) 
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 Polyunsaturated fatty acids (PUFAs) 

 Cyclopropane fatty acids (CFA) 

 Hydroxy fatty acids 

 Saturated fatty acids (SFAs) 

 Odd chain fatty acids 

 Short chain fatty acids (SCFA) 

 Long chain fatty acids (LCAs) 

 Omega-3 fatty acids 

 Hydroxylated fatty acids 

 Polyhydroxyalkanoates (PHA) 

 Omega 9 fatty acids 

 conjugated fatty acids 

 Iso/ anteiso fatty acids 

 3-hydroxy fatty acids 

 Mycolic acids 

 Gopanoids 

 Wax esters 

 Sterols 

 Fatty acid phospholipids (PLFA) 

 Lipopolysaccharides (LPS) 

 Essential lipids 

 Very long chain fatty acids (VLCFA) 

 diacylglycerols 

 

1. Branched Chain Fatty Acids (BCFAs): BCFAs are commonly found in bacterial cell 

membranes and can be used as markers to identify bacteria. Some examples of BCFAs include o- and 

anteiso -fatty acids such as iso-C15:0 and iso-C17:0 [13,15,39-44]. 

2. Monounsaturated fatty acids (MUFAs): MUFAs are fatty acids with one double bond in 

their hydrocarbon chain. Microorganisms often display specific MUFA patterns that can be used for 

microbial identification. Examples include oleic acid (C18:1) and palmitoleic acid (C16:1) [13,39,45-

47]. 

3. Polyunsaturated fatty acids (PUFAs): PUFAs are fatty acids with several double bonds in 

their hydrocarbon chain. Although the presence of certain PUFAs in microorganisms is less common 

than in higher organisms, they may be indicative of certain types of microbes. Examples include 

linoleic acid (C18:2) and linolenic acid (C18:3) [48-51]. 

4.Cyclopropane fatty acids (CFAs): Some bacteria produce CFAs, which are fatty acids with 

one or more cyclopropane rings in their structure. The presence of CFAs can be a characteristic marker 

for certain bacterial species. Cyclopropane fatty acids such as cyclopropane-C19:0 are commonly used 

for microbial identification [15,39,49,52-54]. 

5.Hydroxy fatty acids: Hydroxy fatty acids are fatty acids that contain one or more hydroxyl 

groups in their structure. These fatty acids are often produced by certain types of bacteria and can 

serve as markers for their identification [55-58]. Examples include 3-hydroxy fatty acids such as 3-

hydroxydecanoic acid (C10:0 3-OH) and 3-hydroxytetradecanoic acid (C14:0 3-OH). 

6. Saturated fatty acids (SFA). Saturated fatty acids are fatty acids that do not have double 

bonds in the hydrocarbon chain. Although SFAs are not as specific as other types of fatty acids, their 

relative abundance and distribution can provide insight into microbial communities [14,47,49]. 

Examples of SFAs include stearic acid (C18:0) and palmitic acid (C16:0). 



CAJMNS              Volume: 04 Issue: 05 | Sep-Oct 2023  

 

 370 Published by “ CENTRAL ASIAN STUDIES" http://www.centralasianstudies.org 

 

7. Odd-chain fatty acids. Odd chain fatty acids have an odd number of carbon atoms in their 

structure, such as heptadecanoic acid (C17:0) and nonadecanoic acid (C19:0). These fatty acids can be 

produced by some microorganisms and can serve as markers for their identification [15,60-64]. 

8.Short-Chain Fatty Acids (SCFAs): SCFAs typically contain less than six carbon atoms and 

are produced by microbial fermentation. Examples include acetic acid (C2:0) and propionic acid 

(C3:0). SCFAs play an important role in microbial ecology and can be used as markers of specific 

microbial metabolic activity [65–68]. 

9. Long Chain Fatty Acids (LCFAs): LCFAs are fatty acids with more than 14 carbon atoms. 

They can be found in a variety of microorganisms, and their relative abundance can provide insight 

into the composition of a microbial community. Examples include behenic acid (C22:0) and arachidic 

acid (C20:0) [13,14,64]. 

10. Omega-3 fatty acids: Omega-3 fatty acids are polyunsaturated fatty acids with a double 

bond at the third carbon atom from the omega end of the carbon chain. They are commonly found in 

some microorganisms, especially marine bacteria and algae. Examples of omega-3 fatty acids include 

eicosapentaenoic acid (EPA, C20:5ω3) and docosahexaenoic acid (DHA, C22:6ω3). The presence of 

omega-3 fatty acids can serve as a marker for certain types or groups of microbes [69-74]. 

11. Hydroxylated fatty acids: Hydroxylated fatty acids are fatty acids that contain one or 

more hydroxyl groups attached to the carbon chain. These fatty acids are often produced by some 

bacteria as secondary metabolites and may act as signaling molecules or play a role in host-microbe 

interactions. Examples include 10-hydroxy-2-decanoic acid (C10:0 10-OH) produced by some Gram-

negative bacteria [13,75-78]. 

12.Polyhydroxyalkanoates (PHA): Polyhydroxyalkanoates are a class of microbial polyesters 

synthesized by some bacteria as intracellular storage compounds. PHAs are composed of various 

hydroxyalkanoic acids and can serve as markers for the presence of bacteria capable of producing 

these polymers [79-82]. 

13. Omega-9 fatty acids: Omega-9 fatty acids are monounsaturated fatty acids with a double 

bond at the ninth carbon atom from the omega end of the carbon chain. Although omega-9 fatty acids 

are also found in higher organisms, they can be used as markers for certain microbial species or strains 

[83-86]. 

14. Conjugated fatty acids: Conjugated fatty acids are characterized by the presence of 

several conjugated double bonds. These fatty acids are produced by some bacteria and can serve as 

markers for certain microbial groups. Examples include conjugated linoleic acid (CLA) produced by 

lactic acid bacteria [87,88]. 

15.Iso/ anteiso fatty acids: Iso and anteiso fatty acids are branched chain fatty acids that 

contain a methyl group attached to a carbon atom adjacent to a carboxyl group. These fatty acids are 

commonly found in bacteria and can serve as markers for specific bacterial groups or taxonomic 

identification. Examples include iso-C15:0 and iso-C17:0 [89-90]. 

16.3-hydroxy fatty acids: 3-hydroxy fatty acids are fatty acids containing a hydroxyl group at 

the third carbon atom. These fatty acids are produced by some bacteria as components of complex 

lipids and can act as markers for certain species or groups of microbes. Examples include 3-

hydroxydecanoic acid (C10:0 3-OH) and 3-hydroxytetradecanoic acid (C14:0 3-OH) [49,75,91-93]. 

17. Mycolic acids: Mycolic acids are long chain fatty acids with a unique structure that are 

found in the cell walls of some bacteria, especially mycobacteria. These fatty acids contribute to the 

characteristic waxy appearance of the cell wall and can serve as markers for the presence of 

mycobacteria [94,95]. 

18. Gopanoids: hopanoids are bacterial lipids that are structurally similar to sterols that are 

found in eukaryotes. These lipids are widely distributed in bacteria and can act as biomarkers for 

bacterial populations. Hopanoids have been used as markers for the presence of certain groups of 

bacteria, such as cyanobacteria and some proteobacteria [96-99]. 
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19. Wax esters: Wax esters are ester compounds formed by the esterification of fatty acids 

with long chain alcohols. Some bacteria and fungi can produce wax esters, and their presence can 

serve as a marker for the activity of certain micro-organisms or metabolic processes. Wax esters have 

been studied in various environments, including marine systems and soil microbial communities 

[13,100-104]. 

20. Sterols: Although sterols are more commonly associated with eukaryotes, some bacteria, 

such as some Mycoplasma species , are able to synthesize sterol-like compounds called bacteriohopan 

polyols (BHPs). These compounds can serve as markers for the presence of certain groups of bacteria 

and have been used in paleoecological studies as biomarkers of microbial activity [15,105-108]. 

21.Phospholipids of fatty acids (PLFA): Phospholipids of fatty acids are the fatty acid 

components of phospholipids, which are the main constituents of the cell membranes of 

microorganisms. PLFA analysis can provide insight into microbial biomass, community structure, and 

functional diversity. Various PLFAs can be used as markers for certain microbial groups or metabolic 

activity [39,46,109-115]. 

22. Lipopolysaccharides (LPS): Lipopolysaccharides are complex molecules found in the 

outer membrane of Gram-negative bacteria. They consist of a lipid component (lipid A) and a 

polysaccharide component. The fatty acid composition of lipid A can vary between bacterial species 

and strains, and LPS analysis can provide markers for the presence and identification of specific 

Gram-negative bacteria [116-119]. 

23.Ether lipids: While most microorganisms contain ester-linked fatty acids, some archaea, 

such as methanogens , produce ester lipids in their cell membranes. Ether lipids have unique structural 

characteristics and can serve as markers for the presence of specific archaeal groups [51,120]. 

24. Very Long Chain Fatty Acids (VLCFA): Very long chain fatty acids generally refer to 

fatty acids with a carbon chain length of 20 or more carbon atoms. These fatty acids are found in 

various microorganisms and can serve as markers for specific microbial groups or metabolic activity. 

VLCFAs have been studied in the context of soil microbial communities and their potential role in 

nutrient cycling [64,69,121-124]. 

25. Diacylglycerols: Diacylglycerols are lipid molecules composed of two fatty acid chains 

attached to a glycerol backbone. They are important intermediates in lipid metabolism and membrane 

biosynthesis [13,121,125-127]. 

Advantages of GC-MS [1-4] : 

 High Sensitivity: GC-MS is one of the most sensitive methods for analyzing organic 

compounds. It allows the detection and determination of substances at very low concentrations, which 

is especially important for medical, food and environmental analysis. 

 High specificity: GC-MS provides excellent recognition specificity and a unique ability 

to determine the molecular structure of the analyzed compounds. This allows you to get more accurate 

and reliable results. 

 Ability to analyze a wide range of compounds: GC-MS can be used to analyze 

various classes of organic compounds, including volatile and thermostable substances, aromatic and 

heterocyclic compounds, polymers, and even living tissues. 

 Fast and automated: GC-MS is a fast and relatively easy-to-use method of analysis. 

Modern instruments have the ability to automate sample insertion and data processing, minimizing 

human error and increasing productivity. 

Limitations of GC/MS [ 5-9 ] : 

 High equipment cost: Acquisition and maintenance of GC/MS equipment is a 

significant financial investment, especially for high performance and multi-channel systems. 
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 Difficulty in interpreting data: Interpreting mass spectral data can be complex and 

requires specific knowledge and skills. In some cases, additional analysis or database comparison may 

be required to fully identify compounds. 

 Insufficient Resolution: Some compounds may experience peak overlapping problems, 

especially when analyzing complex mixtures. This can complicate identification and quantification. 

 Possibility of analyte degradation: High temperatures, use of catalytic surfaces, and 

other operating conditions in GC/MS can degrade some compounds. This may lead to false results or 

the inability to analyze certain substances. 

Future prospects for GC-MS and conclusions. 

The future prospects of gas chromatography -mass spectrometry (GC-MS) promise to be very 

promising in many scientific and industrial fields. Here are a few key takeaways about the future of 

this technology: 

 Instrumentation Developments: Significant developments in GC/MS equipment are 

expected over time, including improved detector sensitivity, increased resolution, and increased 

analysis speed. This will allow researchers to obtain more accurate and reliable analysis results. 

 Expanding Applications: GC/MS has already been successfully applied in a variety of 

applications including food, environmental, pharmaceutical, oil refining, and more. In the future, GC-

MS is expected to find new applications such as forensics, medicine, and biological research. 

 Methodological evolution: With the development of GC/MS, new and improved 

methods of analysis are expected. For example, multivariate GC/MS allows you to get more detailed 

information about the composition of samples, as well as integrate data from various sources for a 

more complete analysis. 

 Application of artificial intelligence and machine learning: In the future, the use of 

artificial intelligence and machine learning methods in the analysis of GC-MS data is expected to 

increase. This will automate and speed up the analysis process, as well as facilitate the interpretation of 

the results. 

All in all, the future prospects of GC/MS promise to be very attractive and useful for research 

and industry. This technology will continue to evolve, opening up new possibilities for analysis and 

allowing a more complete understanding of complex chemical and biological systems. 

The choice and identification of specific fatty acid markers depends on the focus of the study 

and the target microorganisms. The use of fatty acids as markers in microbial analysis provides 

valuable insight into microbial community structure, metabolic activity, and ecological functions. 

Advanced analytical techniques such as chromatography, mass spectrometry, and lipidomics have 

contributed greatly to the identification and characterization of fatty acid markers in microorganisms. 

Overall, the analysis of fatty acids as markers in microorganisms provides valuable information 

for microbial identification, analysis of community structure, and understanding of the functional roles 

of microorganisms in various environments. Techniques such as gas chromatography-mass 

spectrometry (GC-MS) are commonly used to analyze fatty acids, allowing researchers to gain insight 

into microbial communities and their role in plant-microbial interactions, environmental processes, 

and human health. 
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